Abstract:
Precipitation of an ammonium salt is prevented while suppressing an increase in water content of the aqueous urea solution which is to be supplied to a urea granulation step, when recovering and using urea and NH3 in a gas which contains urea dust and NH3 and which arises from a urea granulation step.
Abstract:
Disclosed are: a treatment method comprising (1) a step in which an aqueous solution containing urea, ammonia and carbon dioxide is introduced into a first stripper (PCS1) and subjected to stripping, and the aqueous solution after stripping is introduced into a urea hydrolyzer (UHY), (2) a step in which urea in the aqueous solution is hydrolyzed in the urea hydrolyzer (UHY), and the aqueous solution after hydrolysis is introduced into a second stripper (PCS2), (3) a step in which the aqueous solution is subjected to stripping in the second stripper (PCS2), and (4) a step in which a part of the aqueous solution before being stripped in the first stripper (PCS1), and/or, a part of the aqueous solution after being stripped in the first stripper (PCS1) but before being hydrolyzed in the urea hydrolyzer (UHY) is introduced into an exhaust gas treatment equipment equipped with an ammonia scrubbing equipment (ASCR); and a treatment equipment therefor.
Abstract:
Provided are an apparatus and a method for separation and recovery of propane and heavier hydrocarbons from LNG. The apparatus has, from the upstream side toward the downstream side of LNG supply, first column (3) equipped with first column overhead condenser (2), first column bottom reboiler (4) and side reboiler (5), and second column (14) equipped with second column overhead condenser (11) and second column bottom reboiler (15). The first column (3) separates methane and a part of ethane as an overhead vapor and separates remaining ethane and C3 or higher hydrocarbons as a bottom liquid. The second column (14) separates ethane as an overhead vapor and separates C3 or higher hydrocarbons as a bottom liquid.
Abstract:
Method and apparatus that enable the more efficient manufacture of urea are provided. Before unreacted substances are removed from a urea synthesis solution obtained from a stripper, the urea synthesis solution is placed under pressure reduced from the synthesis pressure. Thus, a gas-liquid mixture is obtained. The gas-liquid mixture is heated with a decomposed gas from the stripper using a shell-and-tube heat exchanger, and then introduced into a purification system. In the heating, the gas-liquid mixture is introduced into the shell of the heat exchanger while the decomposed gas is introduced into the tube side of the heat exchanger.
Abstract:
An apparatus includes a first distillation apparatus for obtaining a fraction enriched in C8+ aromatics; a second distillation apparatus for obtaining a fraction enriched in C8 aromatics; an adsorption separation apparatus for obtaining an extract containing para-xylene and a raffinate containing xylene isomers; a third distillation apparatus for obtaining a fraction enriched in para-xylene; and a fourth distillation apparatus for obtaining a fraction enriched in xylene isomers. The second distillation apparatus includes a high-pressure part including a rectifying section; a low-pressure part including a stripping section; a line for directing overhead vapor of the low-pressure part to a column bottom of the high-pressure part; a line for directing a column bottom liquid of the high-pressure part to a column top of the low-pressure part; and a heat exchange structure for transferring heat from the rectifying section to the stripping section.
Abstract:
There is provided a urea synthesis method having excellent reliability and productivity with the amount of oxygen used as a corrosion-resistant agent minimized without using special duplex stainless steel. In a urea synthesis apparatus having a synthesis tower, a stripper, and a condenser, general-purpose austenitic-ferritic duplex stainless steel with Cr content: 21 to 26 wt %, Ni content: 4.5 to 7.5 wt %, Mo content: 2.5 to 3.5 wt %, N content: 0.08 to 0.30 wt %, C content: 0.03 wt % or less, Si content: 1.0 wt % or less, Mn content: 2.0 wt % or less, P content: 0.04 wt % or less, and S content: 0.03 wt % is used as a urea synthesis apparatus material in at least some of parts where the urea synthesis apparatus comes into contact with a fluid having corrosiveness, and oxygen feed concentration with respect to carbon dioxide is 100 to 2,000 ppm.
Abstract:
A distillation apparatus includes a rectifying column, a stripping column, a first pipe that communicates a column top of the stripping column with a column bottom of the rectifying column, and a compressor configured to compress vapor from the stripping column and then to feed the compressed vapor to the rectifying column. The distillation apparatus further includes a heat exchanger located at a predetermined stage of the rectifying column, a liquid withdrawal unit located at a predetermined stage of the stripping column and configured to withdraw a part of liquid from the predetermined stage to an outside of the column, a second pipe that introduces the liquid from the liquid withdrawal unit to the heat exchanger, and a third pipe that introduces fluids introduced through the second pipe to the heat exchanger and then discharged out of the heat exchanger to a stage directly below the liquid withdrawal unit.
Abstract:
The present invention relates to a method for producing lithium carbonate, which is important as a raw material of a lithium ion battery and the like, from brine resources. More specifically, the invention relates to a method for producing lithium carbonate, in which carbon dioxide gas obtained by calcining limestone is introduced, in the presence of ammonia, into a concentrated brine, which is prepared from a lithium-containing brine as a raw material through an evaporative concentrating step, a desulfurizing step and an electrodialysis step, thereby depositing lithium carbonate crystals, and the crystals thus deposited are recovered through solid-liquid separation.
Abstract:
There are provided a method for analyzing an aqueous ammonium carbamate solution whereby the composition of an unreacted-gas absorber outlet liquid can be specified in real time, and a method for operating an unreacted gas absorber by use of the same. The method for analyzing the composition of an aqueous ammonium carbamate solution includes determining ammonia component concentration, carbon dioxide component concentration, and water concentration of the aqueous ammonium carbamate solution, which is the unreacted-gas absorber outlet liquid in a urea production process, by using a correlation among viscosity, temperature, and carbon dioxide component concentration of the aqueous solution and a correlation among density, temperature, ammonia component concentration, and carbon dioxide component concentration of the aqueous solution, wherein the ammonia component concentration is a concentration of a sum of free ammonia and equivalent ammonia of ammonium carbamate which are contained in the aqueous solution, and the carbon dioxide component concentration is a concentration of equivalent carbon dioxide of ammonium carbamate contained in the aqueous solution.
Abstract:
A piping system comprising: a main pipe; a first pipe member connecting an equipment nozzle and the main pipe via a first bellows; a second pipe member connected to a side part of the main pipe; a third pipe member connected to the other end of the second pipe member via a second bellows; first and second tie rod support members fixed to the first and third pipe members; tie rods that interconnect the tie rod support members; and an anchor that sets a portion of the main pipe as a fixed point. Lengths of the pipe members between the tie rod support members are determined so that the first bellows contracts by thermal expansion of the equipment nozzle, the first pipe member, and the pipe member of the main pipe below the anchor, and the second bellows contracts by an amount equally to that of the first bellows.