Abstract:
The invention is intended to establish means for manufacturing MB2 single crystals and to provide a useful superconductive material (wire rod and so forth) taking advantage of anisotropic superconductive properties thereof. A mixed raw material of Mg and B or a precursor containing MgB2 crystallites, obtained by causing reaction of the mixed raw material of Mg and B, kept in contact with hexagonal boron nitride (hBN), is held at a high temperature in the range of 1300 to 1700null C. and under a high pressure in the range of 3 to 6 GPa to cause reaction for forming an intermediate product, thereby growing the MB2 single crystals having anisotropic superconductive properties via the intermediate product. The single crystals have features such that, depending on a direction in which a magnetic field is applied thereto, an irreversible magnetic field strength becomes equivalent to not less than 95% of a second magnetic field strength, so that adjustment of crystal orientation thereof results in production of a superconductive material excellent in property. Further, it is useful in effecting growth of the single crystals to cause a reducing agent such as Mg and so forth to coexist at the time of the reaction, or to provide a temperature gradient in melt occurring in the course of the reaction.
Abstract:
Methods of forming polycrystalline diamond include encapsulating diamond particles and a hydrocarbon substance in a canister, and subjecting the encapsulated diamond particles and hydrocarbon substance to a pressure and a temperature sufficient to form inter-granular bonds between the diamond particles. Cutting elements for use in an earth-boring tool includes a polycrystalline diamond material formed by such processes. Earth-boring tools include such cutting elements.
Abstract:
Methods of fabricating polycrystalline diamond include encapsulating diamond particles and a hydrocarbon substance in a canister, and subjecting the encapsulated diamond particles and hydrocarbon substance to a pressure of at least 5.0 GPa and a temperature of at least 1400° C. to form inter-granular bonds between the diamond particles. Cutting elements for use in an earth-boring tool includes a polycrystalline diamond material formed by such processes. Earth-boring tools include such cutting elements.
Abstract:
A method for producing a diamond material by contacting a fluorinated precursor with a hydrocarbon in a reactor and forming a combination in the absence of a metal catalyst; increasing the pressure of the reactor to a first pressure; heating the combination under pressure to form a material precursor; cooling the material precursor; and forming a diamond material.
Abstract:
A method of making diamond including mixing graphene with diamond seed to form a powder mixture, and then sintering the powder mixture, in the absence of a transition metal catalyst, at high pressure and high temperature; and a method of making a polycrystalline diamond compact including mixing graphene in diamond powder to form a powder mixture with less than about 50% graphene by weight, and then sintering the powder mixture, in the absence of a transition metal catalyst, at high pressure and high temperature.
Abstract:
Methods of fabricating polycrystalline diamond include encapsulating diamond particles and a hydrocarbon substance in a canister, and subjecting the encapsulated diamond particles and hydrocarbon substance to a pressure of at least 5.0 GPa and a temperature of at least 1400° C. to form inter-granular bonds between the diamond particles. Cutting elements for use in an earth-boring tool includes a polycrystalline diamond material formed by such processes. Earth-boring tools include such cutting elements.