摘要:
A high-frequency light-generated focused ultrasound (LGFU) device is provided. The device has a source of light energy, such as a laser, and an optoacoustic lens comprising a concave composite layer with a plurality of light absorbing particles that absorbs laser energy, e.g., carbon nanotubes, and a polymeric material that rapidly expands upon exposure to heat, e.g., polydimethylsiloxane. The laser energy is directed to the optoacoustic lens and thus can generate high-frequency (e.g., ≧10 MHz) and high-amplitude pressure output (e.g., ≧10 MPa) focused ultrasound. The disclosure also provides methods of making such new arcuate optoacoustic lenses, as well as methods for generating and using the high-frequency and high-amplitude ultrasound, including for surgery, like lithotripsy and ablation.
摘要:
Disclosed herein is a high-efficiency kilohertz-range acoustic wave generator using a pulsed thermal radiation beam and nanoparticles. A vibration (pulse) generating means having a suspension structure is provided behind a light interrupter. The suspension structure is configured such that nanoparticles are suspended in a solution so that when the nanoparticles are thermally expanded by pulse beams directly applied to the nanoparticles and are thermally contracted, the solution vibrates (generates matter waves and pressure waves). Thereby, loss of pulse beams can be minimized, and energy having a relatively large wavelength can be easily obtained. Therefore, the efficiency and productivity in generating acoustic waves can be maximized.
摘要:
High frequency ultrasound transducers configured for use with photoacoustics systems are disclosed herein. In one embodiment, an ultrasound transducer stack includes a transducer layer and an at least partially optically reflective lens layer. The lens can include a lens material doped with a plurality of optically reflective particles. In another embodiment, the transducer stack can further include a matching layer comprising a matrix material doped with a plurality of optically reflective particles. In a further embodiment, the transducer stack can include an optically reflective matching layer positioned proximate a front surface of an acoustic lens.
摘要:
A sapphire structure with a metal substructure is disclosed. The sapphire structure with a metal substructure includes a sapphire structure and a metal substructure. The sapphire structure includes a flat surface and a concave portion on the flat surface. The metal substructure in the concave portion is bonded to an inner surface of the concave portion and includes a surface portion that is substantially flush with the flat surface.
摘要:
Parts stuck together in a stack are separated by placing the parts in a vibratory apparatus and vibrating the stack of parts with a vibratory head of the vibratory apparatus to separate them and also constrain the parts with the vibratory head as the parts are vibrated.
摘要:
Embodiments of methods of non-destructively testing whether a laminated substrate satisfies structural requirements are disclosed herein. Additionally, laminated substrates that can be non-destructively tested are also disclosed along with methods of manufacturing the same. To non-destructively test whether the laminated substrates satisfies the structural requirement, an electrical characteristic of the laminated substrate may be detected. Since the detected electrical characteristic is related to a structural characteristic being tested, whether the structural characteristic complies with the structural requirement can be determined based on the electrical characteristic.
摘要:
Ultrasound inspection methods for noisy materials and related probes are disclosed to inspect a defect in a cast material that use polycarbonate delay layers having a first surface configured to be disposed on a surface of the cast material; and an acoustic crystal element disposed on a second surface of the polycarbonate delay layer.
摘要:
The use of any micro-mechanical component in an ultrasound system is disclosed. In particular, the use of micro-mechanical ultrasound transducers, micro-relays, micro-switches and inductors in the transducer probe head, in the transducer connector, coupled with the system transducer connector(s) or anywhere else in the system. In an ultrasound system, micro-mechanical components such as micro-mechanical ultrasound transducers, micro-fabricated switches, relays and inductors permit impressive size reduction, cost reduction, signal-integrity enhancement and improved operational flexibility.