Abstract:
A pneumatic tire comprises a tread portion with a left-right asymmetry tread pattern including inboard and outboard tread edges, a pair of inboard and outboard center main grooves to form a center portion therebetween, a pair of inboard and outboard shoulder main grooves to form a pair of middle portions and a pair of shoulder portions, inboard lateral main grooves extending from the inboard tread edge beyond the tire equator without reaching the outboard center main groove, inboard shoulder lateral grooves between adjacent inboard lateral main grooves, outboard shoulder lateral grooves extending from the axially outside of the outboard tread edge without reaching the outboard shoulder main groove, inboard middle lateral grooves between adjacent inboard lateral main grooves and extending from the inboard shoulder main groove without reaching the inboard center main groove, outboard middle lateral grooves and outboard middle sub lateral grooves.
Abstract:
A pneumatic tire including a first row of blocks arranged in a substantially central region of a tread of the pneumatic tire, wherein the first row of blocks includes a plurality of first blocks; a plurality of first grooves, each arranged between two adjacent first blocks; a plurality of second rows of blocks each including a plurality of second blocks, each arranged on either side of the first row of blocks; a plurality of second grooves, each arranged between the first row of blocks and each of the second rows of blocks; and a plurality of third grooves, wherein each third groove is arranged between two adjacent second blocks, the third grooves including a plurality of fourth grooves and a plurality of fifth grooves, with each fourth groove being narrower than each fifth groove, and the fourth groove and fifth groove being arranged alternately.
Abstract:
A tread portion includes land portions partitioned by circumferential grooves extending in a tire circumferential direction and lateral grooves extending in a tire width direction. At least one land portion comprises an annular sipe. A surface of a portion of the land portion surrounded by the annular sipe includes at least one inner side inclining face that inclines toward the annular sipe. A surface of a portion of the land portion along a periphery of the annular sipe includes at least one outer side inclining face that inclines toward the annular sipe. The inner side inclining face and the outer side inclining face are disposed so as not to be opposite each other. A step is formed between a first edge of the annular sipe of the inner side inclining face or the outer side inclining face and a second edge of the annular sipe opposing the first edge.
Abstract:
A pneumatic tire includes a tread portion provided with a circumferentially extending zigzag shoulder main groove arranged proximate to a tread edge, and a plurality of shoulder lateral grooves each extending axially outwardly from the shoulder main groove. Each of the shoulder lateral grooves includes a first portion and second portion. The first portion includes a first groove wall and an axially inner end connected to the shoulder main groove. The second portion is arranged axially outward of the first portion and includes a second groove wall. The second portion has a groove width and a groove depth greater than those of the first portion. The first groove wall of the first portion and the second groove wall of the second portion are smoothly continued.
Abstract:
In the pneumatic tire, the blocks above the circumferential reinforcing layer have at least one sipe. Also, the sipe has a bent shape, in a plan view, with two flex points P1, P2, and has a closed structure with two end points Q1, Q2 terminating within the block. Also, the angle α between the line that connects the flex points P1, P2 and the tire circumferential direction is within the range such that 0°≦α≦10°. Also, the angle β1 between the line connecting the flex point P1 and the end point Q1 and the tire circumferential direction, and the angle β2 between the line connecting the flex point P2 and the end point Q2 and the tire circumferential direction are within the range such that 35°≦β1≦55° and 35°≦β2≦55°.
Abstract:
Tread for a tire for the driven axle of a heavy goods vehicle, comprising a plurality of circumferential grooves delimiting at least three ribs each having a height and a width measured in the axial direction, axially delimited by two edge rows, each rib having a plurality of sipes able to close at least in part as they enter the contact patch, and opening onto each lateral face of the rib to form two edge corners and having a depth at least equal to 50% of the height of the rib, these sipes in pairs delimiting an elementary rib volume and an elementary contact surface, wherein each elementary volume delimited by two sipes of one and the same rib has a void volume opening on the contact face in the new state, having a total area on the tread surface at least equal to 0.4% and at most equal to 1.5% of the area of the elementary contact surface, having a depth at least equal to half the depth of the grooves, and determined such that it remains open as it passes through the contact patch so as to allow any liquid present on the road surface to be picked up.
Abstract:
A pneumatic tire is provided with a plurality of circumferential main grooves extending in the tire circumferential direction and a plurality of land sections partitioned by the circumferential main grooves. The land sections are provided with a plurality of auxiliary sipes. In a plan view of a tread, the auxiliary sipes have a bent shape formed by connecting first bent sections and second bent sections. A groove depth (Dg) of the circumferential main grooves and a sipe depth (Ds_1) of the first bent sections and a sipe depth (Ds_2) of the second bent sections of the auxiliary sipes have the relationships of 0.5≦Ds_1/Dg≦1.0 and 0.2≦Ds_2/Ds_1≦0.5.
Abstract:
Provided is a pneumatic tire whose braking performance on ice and partial-wear resistance can be improved. Sipes 11X provided in a rib 5 on a tire equatorial plane TE are formed in such a three-dimensional shape that the amount at which the rib 5 collapses due to an external force is smaller in the tire rotational direction than in a direction opposite to the tire rotational direction. In each block 10 in each shoulder region 1S, sipes 11Ma in a block tread-in side portion 10A are each formed in such a three-dimensional shape that the amount at which the block 10, if entirely provided with the sipes 11Ma, collapses due to an external force will be smaller in the tire rotational direction than in the direction opposite to the tire rotational direction. Sipes 11Mb in a block kick-out side portion 10B are each formed in such a three-dimensional shape that the amount at which the block 10, if entirely provided with the sipes 11Mb, collapses due to an external force will be smaller in the direction opposite to the tire rotational direction than in the tire rotational direction.
Abstract:
In the pneumatic tire, the blocks above the circumferential reinforcing layer have at least one sipe. Also, the sipe has a bent shape, in a plan view, with two flex points P1, P2, and has a closed structure with two end points Q1, Q2 terminating within the block. Also, the angle α between the line that connects the flex points P1, P2 and the tire circumferential direction is within the range such that 0°≦α≦10°. Also, the angle β1 between the line connecting the flex point P1 and the end point Q1 and the tire circumferential direction, and the angle β2 between the line connecting the flex point P2 and the end point Q2 and the tire circumferential direction are within the range such that 35°≦1≦55° and 35°≦β2≦55°.
Abstract:
This pneumatic tire has a plurality of rib grooves (510) that extend in the direction of tread width formed in the tire peripheral direction (DC), and is provided with shoulder land sections (500) demarcated by the rib grooves (510). A plurality of hook-shaped sipes (600) are formed at the shoulder land sections (500). The hook-shaped sipes (600) have: a peripheral direction sipe section (610) extending along the tire peripheral direction; and a hook-shaped sipe section (620) that is continuous with the peripheral direction sipe section (610) and extends along the direction of tread width. A line (L1) of extension along the hook-shaped sipe sections (620) intersects the line (L2) of extension of the rib grooves (510).