Abstract:
A cable-stranding apparatus includes a stationary guide, a motor, a driven guide, and a controller electrically coupled to the motor. The stationary guide is configured to guide strand elements in a spaced-apart configuration and to pass a core member. The motor is operatively associated with a guide driver. The driven guide is disposed at least partially within the guide driver so as to rotate therewith. The driven guide is configured to receive the strand elements from the stationary guide, individually guide the strand elements received from the stationary guide, and to further pass the core member. The controller is electrically coupled to the motor and configured to control the rotational speed and direction of the motor.
Abstract:
A cable-stranding apparatus includes a stationary guide, a motor, a driven guide, and a controller electrically coupled to the motor. The stationary guide is configured to guide strand elements in a spaced-apart configuration and to pass a core member. The motor is operatively associated with a guide driver. The driven guide is disposed at least partially within the guide driver so as to rotate therewith. The driven guide is configured to receive the strand elements from the stationary guide, individually guide the strand elements received from the stationary guide, and to further pass the core member. The controller is electrically coupled to the motor and configured to control the rotational speed and direction of the motor.
Abstract:
A cable-stranding apparatus includes a stationary guide, a motor, a driven guide, and a controller electrically coupled to the motor. The stationary guide is configured to guide strand elements in a spaced-apart configuration and to pass a core member. The motor is operatively associated with a guide driver. The driven guide is disposed at least partially within the guide driver so as to rotate therewith. The driven guide is configured to receive the strand elements from the stationary guide, individually guide the strand elements received from the stationary guide, and to further pass the core member. The controller is electrically coupled to the motor and configured to control the rotational speed and direction of the motor.
Abstract:
A cable-stranding apparatus includes a stationary guide, a motor, a driven guide, and a controller electrically coupled to the motor. The stationary guide is configured to guide strand elements in a spaced-apart configuration and to pass a core member. The motor is operatively associated with a guide driver. The driven guide is disposed at least partially within the guide driver so as to rotate therewith. The driven guide is configured to receive the strand elements from the stationary guide, individually guide the strand elements received from the stationary guide, and to further pass the core member. The controller is electrically coupled to the motor and configured to control the rotational speed and direction of the motor.
Abstract:
A rope structure comprising a plurality of rope subcomponents, a plurality of bundles, a plurality of first yarns, and a plurality of second yarns. The rope subcomponents are combined to form the rope structure. The bundles are combined to form the rope subcomponents. The first yarns are formed of at least one material selected from the group of materials comprising HMPE, LCP, Aramids, and PBO and have a breaking elongation of approximately 2%-5%. The plurality of second yarns are formed of at least one material selected from the group of materials comprising polyolefin, polyethylene, polypropylene, and blends or copolymers of the two and have a breaking elongation of approximately 2%-12%. The first and second yarns are combined to form the bundles.
Abstract:
A flat type feeder cable useful for transmitting electrical energy from a stationary source to a moving apparatus, which has a plurality of spaced apart strength members each with their respective axes arranged in a line and in substantially coplanar relationship with one another; a plurality of strand members stranded together about each of the strength members to form a core, the strand members themselves being composed of a plurality of electrical conductors circumscribed by a sheath, and are "S-Z" stranded so that they contain first and second alternatingly repeating substantially equal first and second sections, each of said first sections having a common direction and degree of lay and each of said second sections also having a common direction and degree of lay substantially equal opposite to that of the first sections, and, a jacket of flexible material circumscribing the core members.
Abstract:
A facility for manufacturing at least first and second assemblies of M1 filamentary elements and M2 filamentary elements, in which each of the first and second assemblies includes a plurality of filamentary elements wound together in a helix, includes an assembling apparatus and a splitting apparatus. The assembling apparatus of the facility assembles M filamentary elements together into a layer of M filamentary elements around a temporary core, to form a temporary assembly. The splitting apparatus of the facility splits the temporary assembly into at least the first and second assemblies of M1 filamentary elements and M2 filamentary elements.
Abstract:
A rope structure of the present invention comprises a plurality of first yarns and a plurality of second yarns. The first yarns are formed of at least one material selected from the group of materials comprising HMPE, LCP, Aramids, and PBO, have a breaking elongation of approximately 2%-5%, and have a tenacity of approximately 25-45 gpd. The second yarns are formed of at least one material selected from the group of materials comprising polyolefin, polyethylene, polypropylene, and blends or copolymers of the two, have a breaking elongation of approximately 2%-12%, and have a tenacity of approximately 6-22 gpd. The first and second yarns are combined to form rope sub-components. The rope sub-components comprise approximately 20-80% by weight of the first yarns.
Abstract:
A rope structure comprising a plurality of rope subcomponents, a plurality of bundles, a plurality of first yarns, and a plurality of second yarns. The rope subcomponents are combined to form the rope structure. The bundles are combined to form the rope subcomponents. The first yarns are formed of at least one material selected from the group of materials comprising HMPE, LCP, Aramids, and PBO and have a breaking elongation of approximately 2%-5%. The plurality of second yarns are formed of at least one material selected from the group of materials comprising polyolefin, polyethylene, polypropylene, and blends or copolymers of the two and have a breaking elongation of approximately 2%-12%. The first and second yarns are combined to form the bundles.