摘要:
A rope structure comprising a plurality of rope subcomponents, a plurality of bundles combined to form the rope subcomponents, a plurality of first yarns and a plurality of second yarns combined to form the bundles. In one embodiment, the first yarns have a tenacity of approximately 25-45 gpd and the second yarns have a tenacity of approximately 6-22 gpd. In another embodiment, the first yarns have a breaking elongation of approximately 2%-5% and the second yarns have a breaking elongation of approximately 2%-12%.
摘要:
A rope structure comprising a plurality of rope subcomponents, a plurality of bundles, a plurality of first yarns, and a plurality of second yarns. The rope subcomponents are combined to form the rope structure. The bundles are combined to form the rope subcomponents. The first yarns are formed of at least one material selected from the group of materials comprising HMPE, LCP, Aramids, and PBO and have a breaking elongation of approximately 2%-5%. The plurality of second yarns are formed of at least one material selected from the group of materials comprising polyolefin, polyethylene, polypropylene, and blends or copolymers of the two and have a breaking elongation of approximately 2%-12%. The first and second yarns are combined to form the bundles.
摘要:
A rope structure comprising a plurality of rope subcomponents, a plurality of bundles, a plurality of first yarns, and a plurality of second yarns. The rope subcomponents are combined to form the rope structure. The bundles are combined to form the rope subcomponents. The first yarns are formed of at least one material selected from the group of materials comprising HMPE, LCP, Aramids, and PBO and have a breaking elongation of approximately 2%-5%. The plurality of second yarns are formed of at least one material selected from the group of materials comprising polyolefin, polyethylene, polypropylene, and blends or copolymers of the two and have a breaking elongation of approximately 2%-12%. The first and second yarns are combined to form the bundles.
摘要:
A rope structure comprising a plurality of rope subcomponents, a plurality of bundles combined to form the rope subcomponents, a plurality of first yarns and a plurality of second yarns combined to form the bundles. In one embodiment, the first yarns have a tenacity of approximately 25-45 gpd and the second yarns have a tenacity of approximately 6-22 gpd. In another embodiment, the first yarns have a breaking elongation of approximately 2%-5% and the second yarns have a breaking elongation of approximately 2%-12%.
摘要:
A fire resistant rope and method of making the same. The fire resistant rope comprises high tensile strength fibers, high temperature resistant fibers, and a fire retardant coating. The fire retardant coating is applied to at least one of the high tensile strength fibers and the high temperature resistant fibers. The high tensile strength fibers are combined to form a core. The high temperature resistant fibers are combined to form a jacket that at least partly covers the core. The jacket is configured to inhibit movement of air to the core. The coating is configured to inhibit movement of air to the core.
摘要:
A fire resistant rope and method of making the same. The fire resistant rope comprises a core formed of high tensile strength fibers and a jacket formed of high temperature resistant fibers, where the jacket covers the core. The core comprises a plurality of strands, where each strand comprises a plurality of yarns and each yarn comprises a plurality of high tensile strength fibers. The jacket comprises a plurality of strands, where each strand comprises a plurality of yarns and each yarn comprises a plurality of high temperature resistant fibers. Optionally, a fire retardant material may be applied to the rope.
摘要:
A fire resistant rope and method of making the same. The fire resistant rope comprises a core, a jacket, and a fire retardant coating. The core comprises a plurality of strands. Each core strand comprises a plurality of core yarns, and each core yarn comprises a plurality of high tensile strength fibers. The jacket comprises a plurality of jacket strands. Each jacket strand comprises a plurality of jacket yarns and each jacket yarn comprises a plurality of high temperature resistant fibers. The fire retardant coating formed on at least one of the core and the jacket. The fire retardant coating expands when subjected to temperatures above a state-change level. At least a portion of the expanded coating inhibits transfer of heat to the core. The state-change level is below a failure temperature defined by the materials from which at least some of the fibers forming the core are formed.
摘要:
A rope structure comprising a plurality of formed composite strands. Each of the formed composite strands comprises fiber material and matrix material. The fiber material within the matrix material is twisted. The shapes of the plurality of formed composite strands are predetermined to facilitate combination of the plurality of composite strands into the rope structure.
摘要:
A termination assembly for a composite rope structure comprising an end comprises a distal connection member and a proximal connection member. The distal connection member defines a first threaded surface and a working portion, where the working portion is adapted to be connected to a structure. The proximal connection member defines a second threaded surface, an internal surface, and a proximal opening. The first and second threaded surfaces are configured to engage each other to detachably attach the distal connection member and the proximal connection member. The internal surface of the proximal connection member is configured to engage the end of the composite rope structure to secure the composite rope structure relative to the proximal connection member.
摘要:
An electronic system is provided, including a writing device, first and second image capturing units and a control module. The writing device has a pen point to write on a writing board, and has a first light-emitting unit to emit a first detection light. The first and second image capturing units are respectively disposed on a first corner and a second corner of the writing board to receive the first detection light in a writing mode, in order to respectively generate first and second image signals. The control module obtains the coordinates of the writing device on the writing board according to the first and second image signals, such that, when the writing device writes on the writing board, the control module determines to operate in the writing mode, and simultaneously records a writing track of the writing device.