Abstract:
A computer usable medium including computer usable program code for determining an oilfield parameter for a drilling operation. The computer usable program code when executed causing a processor to identify first decision factors and second decision factors about the drilling operation, where each of the first decision factors is contained within first nodes, and where each of the second decision factors is contained within second nodes, where the first and second nodes contain common nodes. The computer usable program code further causing the processor to associate the first nodes to create a first belief network and associate the second nodes to create a second belief network, associate the common nodes of the first belief network with the common nodes of the second belief network to form a multinet belief network, and generate at least one oilfield parameter from the multinet belief network.
Abstract:
One or more computer-readable media include computer-executable instructions to instruct a computing system to receive simulation results for future behavior of a reservoir that includes a material production well and a fluid injection site; define a virtual sensor as being located between the material production well and the fluid injection site; determine fluid saturation at the virtual sensor based at least in part on the simulation results; and issue a notification if the fluid saturation at the virtual sensor exceeds a fluid saturation limit. Various other apparatuses, systems, methods, etc., are also disclosed.
Abstract:
A method for characterizing a desired property of a fluid downhole is described. In some non-limiting examples, the method comprises receiving an input signal representing sound speed of a fluid downhole, processing the input signal using a correlation equation expressing the desired property in terms of at least sound speed to produce an output signal representing the desired property, and outputting the output signal. In some examples, the correlation equation is derived through a chemometric analysis of a training data set, the training data set comprises a plurality of input values and a plurality of output values derived from said input values, between the desired fluid property and the first measured property, and the output values are calculated from the input values using a series of correlation equations. In at least one example, the desired property is gas oil ratio. In another example, the desired property is gas brine ratio. In a further example, the series of correlation equations comprises the Batzle and Wang relations. In another example, the receiving comprises receiving a plurality of input signals representing a plurality of measured properties of a fluid downhole and the processing comprises processing the plurality of input signals using the correlation equation expressing the desired property in terms of the plurality of measured properties.
Abstract:
A method of optimizing drilling including identifying design parameters for a drilling tool assembly, preserving the design parameters as experience data, and training at least one artificial neural network using the experience data. The method also includes collecting real-time data from the drilling operation, analyzing the real-time data with a real-time drilling optimization system, and determining optimal drilling parameters based on the analyzing the real-time date with the real-time drilling optimization system. Also, a method for optimizing drilling in real-time including collecting real-time data from a drilling operation and comparing the real-time data against predicted data in a real-time optimization system, wherein the real-time optimization includes at least one artificial neural network. The method further includes determining optimal drilling parameters based on the comparing the real-time data with the predicted data in the real-time drilling optimization system.
Abstract:
A system, method, and software for optimizing the commingling of well fluids from a plurality of producing subsea wells. The mixing temperature and water content in each header of a collection manifold are calculated for each subsea well and header combinations, responsive to data from sensors at the collection manifold. Combinations with conditions outside operational limits are then discarded. Remaining combinations are ranked based on predetermined optimization criteria. The ranked combinations are provided for the operator for optimizing flow properties and well fluid production. The calculations can restart with new, real-time sensed values from the subsea collection manifold.
Abstract:
An MWD method and apparatus for determining parameters of interest in a formation has a sensor assembly mounted on a slidable sleeve slidably coupled to a longitudinal member, such as a section of drill pipe. When the sensor assembly is held in a non-rotating position, for instance for obtaining the measurements, the longitudinal member is free to rotate and continue drilling the borehole, wherein downhole measurements can be obtained with substantially no sensor movement or vibration. This is particularly useful in making NMR measurements due to their susceptibility to errors due caused by tool vibration. In addition, the substantially non-rotating arrangement of sensors makes it possible to efficiently carry out VSPs, reverse VSPs and looking ahead of the drill bit. A clamping device is used, for instance, to hold the sensor assembly is held in the non-rotating position. The sensor assembly of the present invention can include any of a variety of sensors and/or transmitters for determining a plurality of parameters of interest including, for example, nuclear magnetic resonance measurements.
Abstract:
An induction choke in a petroleum well where a voltage potential is developed across the choke to power and communicate with devices and sensors in the well. Preferably, the induction choke is a ferromagnetic material and acts as an impedance to a time-varying current, e.g. AC. The petroleum well includes a cased wellbore having a tubing string positioned within and longitudinally extending within the casing. A controllable gas lift valve, sensor, or other device is coupled to the tubing. The valve sensor, or other device is powered and controlled from the surface. Communication signals and power are sent from the surface using the tubing, casing, or liner as the conductor with a casing or earth ground. For example, AC current is directed down a casing or tubing or a lateral where the current encounters a choke. The voltage potential developed across the choke is used to power electronic devices and sensors near the choke. Such induction chokes may be used in many other applications having an elongated conductor such as a pipe, where it is desirable to power or communicate with a valve, sensor, or other device without providing a dedicated power or communications cable.
Abstract:
A downhole drilling tractor for moving within a borehole comprises a tractor body, two packerfeet, two aft propulsion cylinders, and two forward propulsion cylinders. The body comprises aft and forward shafts and a central control assembly. The packerfeet and propulsion cylinders are slidably engaged with the tractor body. Drilling fluid can be delivered to the packerfeet to cause the packerfeet to grip onto the borehole wall. Drilling fluid can be delivered to the propulsion cylinders to selectively provide downhole or uphole hydraulic thrust to the tractor body. The tractor receives drilling fluid from a drill string extending to the surface. A system of spool valves in the control assembly controls the distribution of drilling fluid to the packerfeet and cylinders. The valve positions are controlled by motors. A programmable electronic logic component on the tractor receives control signals from the surface and feedback signals from various sensors on the tool. The feedback signals may include pressure, position, and load signals. The logic component also generates and transmits command signals to the motors, to electronically sequence the valves. Advantageously, the logic component operates according to a control algorithm for intelligently sequencing the valves to control the speed, thrust, and direction of the tractor.
Abstract:
A system, method, and software for optimizing the commingling of well fluids from a plurality of producing subsea wells. The mixing temperature and water content in each header of a collection manifold are calculated for each subsea well and header combinations, responsive to data from sensors at the collection manifold. Combinations with conditions outside operational limits are then discarded. Remaining combinations are ranked based on predetermined optimization criteria. The ranked combinations are provided for the operator for optimizing flow properties and well fluid production. The calculations can restart with new, real-time sensed values from the subsea collection manifold.
Abstract:
An iterative drilling simulation method and system for enhanced economic decision making includes obtaining characteristics of a rock column in a formation to be drilled, specifying characteristics of at least one drilling rig system; and iteratively simulating the drilling of a well bore in the formation. The method and system further produce an economic evaluation factor for each iteration of drilling simulation. Each iteration of drilling simulation is a function of the rock column and the characteristics of the at least one drilling rig system according to a prescribed drilling simulation model.