Abstract:
A magnetic drive device may comprise a stator comprising a plurality of windings for generating a first number of magnetic pole pairs and a rotor comprising a plurality of permanent magnets for generating a second number of magnetic pole pairs that differs from the first number of magnetic pole pairs. The magnetic drive device may further comprise a plurality of free-spinning interpole elements disposed within an air gap between the stator and the rotor. The interpole elements may produce a magnetomotive force and harmonically couple the magnetic pole pairs of the stator with the magnet pole pairs of the rotor.
Abstract:
A housing, mandrel and bearing assembly positionable in a wellbore includes a torque transmission member adapted to connect to a source of rotational torque (e.g. a downhole motor power output) and a tubular mandrel adapted to connect to a drill bit. A lower tubular housing is adapted to contain a lower bearing and catch sleeve assembly. The catch assembly is adapted to retain the mandrel in the lower housing if the mandrel breaks. An upper tubular housing contains an upper bearing and is adapted to connect to a housing of the downhole motor. A method of assembling the downhole housing, mandrel and bearing assembly is disclosed.
Abstract:
A downhole stabiliser (5), such as a drill motor stabiliser, comprises at least one reaming means and/or reinforcing means (10). The present invention also relates to an assembly (30), such as a downhole drilling assembly (31), comprising at least one such stabiliser (5) and/or a drill bit (40,41) comprising a gauge bit (42) at or near a drilling end (45) thereof, and a connection means (46) for connecting the drill bit (40,41) to a drill motor assembly (60), wherein the drill bit gauge (42) comprises a substantially cylindrical portion having a length less than or equal to approximately 1.0 times the nominal bit diameter. The present invention also relates to a novel locking mechanism (80), such as a lock and key mechanism, to allow locking of a shaft (70′), e.g. a motor drive shaft (71′), through or together with a stabiliser (5′).
Abstract:
The present invention discloses a cutting tool integrated in a drillstring for enlarging a borehole, where the cutting tool at least comprises: one or more side mills (12, 13, 14) arranged along the axis of said drillstring in a reamer housing (11), where the side mills (12, 13,14) are adapted to be rotated relative to the tool housing (11) by individual driving means. The self driven rotational side mills may be dome shaped cones where expand radially out of the reamer housing (11), or may be a special non-circular dome shaped cones where rotates without expanding.
Abstract:
A drilling apparatus comprised of a multiplicity of subassemblies for drilling an open-hole extension from within an existing cased borehole located in a geological formation for the production of oil and gas. In one embodiment, one subassembly includes a motor located within a cased section of the borehole that rotates a drill pipe segment attached to a rotary drill bit in the open-hole to drill the open-hole extension of the well. In another embodiment, a shroud encloses the motor located within the cased portion of the well that is used to control the mud flow to and from the bit in the open-hole during the drilling process.
Abstract:
A downhole housing, mandrel and bearing assembly 100 includes a flex shaft 20 adapted to connect to a downhole motor power output 309 and a tubular mandrel 30 adapted to connect to a drill bit 370. A lower tubular housing 60 is adapted to contain a lower bearing assembly 90 and catch sleeve assembly 110. The catch assembly 110 is adapted to retain the mandrel 30 in the lower housing if the mandrel breaks. An upper tubular housing 70 contains an upper bearing assembly 80 and is adapted to connect to a housing 302 of the downhole motor 301. A method of assembling the downhole housing, mandrel and bearing assembly 100 is disclosed.
Abstract:
An expandable reamer apparatus and methods for reaming a borehole, wherein a laterally movable blade carried by a tubular body may be selectively positioned at an inward position and an expanded position. The laterally movable blade, held inwardly by blade-biasing elements, may be forced outwardly by drilling fluid selectively allowed to communicate therewith by way of an actuation sleeve disposed within the tubular body. Alternatively, a separation element may transmit force or pressure from the drilling fluid to the movable blade. Further, a chamber in communication with the movable blade may be pressurized by way of a downhole turbine or pump. A ridged seal wiper, compensator, movable bearing pad, fixed bearing pad preceding the movable blade, or adjustable spacer element to alter expanded blade position may be included within the expandable reamer. In addition, a drilling fluid pressure response indicating an operational characteristic of the expandable reamer may be generated.
Abstract:
A drilling system comprising a rotatable drill pipe 12 connected to a tractor unit 10, and a steerable drilling system 18, 20, 22, connected to and movable by the tractor unit 10.
Abstract:
An expandable reamer apparatus and methods for reaming a borehole are disclosed, including at least one laterally movable blade carried by a tubular body selectively positioned at an inward position and an expanded position. The at least one laterally movable blade, held inwardly by at least one blade-biasing element, may be forced outwardly by drilling fluid selectively allowed to communicate therewith or by at least one intermediate piston element. For example, an actuation sleeve may allow communication of drilling fluid with the at least one laterally movable blade in response to an actuation device being deployed within the drilling fluid. Alternatively, a chamber in communication with an intermediate piston element in structural communication with the at least one laterally movable blade may be pressurized by way of a movable sleeve, a downhole turbine, or a pump.
Abstract:
An expandable reamer apparatus and methods for reaming a borehole, wherein a laterally movable blade carried by a tubular body may be selectively positioned at an inward position and an expanded position. The laterally movable blade, held inwardly by blade-biasing elements, may be forced outwardly by drilling fluid selectively allowed to communicate therewith by way of an actuation sleeve disposed within the tubular body. Alternatively, a separation element may transmit force or pressure from the drilling fluid to the movable blade. Further, a chamber in communication with the movable blade may be pressurized by way of a downhole turbine or pump. A ridged seal wiper, compensator, movable bearing pad, fixed bearing pad preceding the movable blade, or adjustable spacer element to alter expanded blade position may be included within the expandable reamer. In addition, a drilling fluid pressure response indicating an operational characteristic of the expandable reamer may be generated.