Abstract:
A turbine engine includes a fan that provides an air flow to the turbine engine as compressor intake air and as compressor bypass air, a first stage compressor positioned to receive the compressor intake air and output a first stage compressed air, and a boiler positioned to cool the first stage compressed air using a fluid. A second stage compressor is positioned to receive the cooled first stage compressed air. A pump is configured to pump the fluid as a liquid into the boiler, extract energy from the first stage compressed air, and cause the cooling of the first stage compressed air.
Abstract:
An aircraft comprising a fuselage, a wing attached thereto, a jet engine attached to the wing or to the fuselage and comprising a main engine and an accessory arrangement, and a heat recovery arrangement. The heat recovery arrangement comprises a heat exchanger arranged in an exhaust zone of the main engine such that heat can be exchanged between an exhaust gas stream exiting the main engine and a working fluid passed through the heat exchanger, an energy converting arrangement received in the fuselage and passed through by the working fluid, the energy converting arrangement comprising an energy source driven by the working fluid, and a pipe arrangement for recirculating working fluid between the heat exchanger and the energy converting arrangement. An aircraft is provided having reduced complexity and increased efficiency, and an energy recirculation line is provided for transmitting energy from the energy source to the accessory arrangement.
Abstract:
A co-generation process for a regenerator in an FCC system having a reactor and a regenerator includes the steps of introducing flue gas from the regenerator into a heating unit at a first location of the heating unit, and introducing an oxygen/fuel gas mixture into the heating unit at a second location of the heating unit apart from the first location, and combusting the oxygen/fuel gas mixture in the heating unit at the second location to form a hot combustion gas. The process further includes the steps of combining the hot combustion gas and the flue gas at a third location of the heating unit apart from the first location to produce heated flue gas, heating water and/or steam with the heated flue gas to produce a heated steam, and introducing the heated steam into a turbine to extract energy from the heated steam.
Abstract:
A thermal management and power generation system for a hypersonic vehicle. The thermal management and power generation system comprising a fluid supply having a volatile fluid and a fuel supply having an endothermic fuel. A first heat exchanger, fluidically coupled to the fluid supply, absorbs heat from a first portion of the hypersonic vehicle, which vaporizes the volatile fluid. A mixing apparatus, fluidically coupled to the first heat exchanger and the fuel supply combines the vaporized volatile fuel and endothermic fuel. A second heat exchanger, fluidically coupled to the mixing apparatus, absorbs heat from a second portion of the hypersonic vehicle and decomposes the endothermic fuel by endothermic pyrolysis. A heat engine, fluidically coupled to the first heat exchanger and the mixing apparatus, is configured to generate an electrical power for use by the hypersonic vehicle. The vaporized volatile fluid mixed with the endothermic fuel within the second heat exchanger reduces coking caused by the endothermic pyrolytic decomposition of the endothermic fuel as compared to an endothermic pyrolytic decomposition of an endothermic fuel not having a vaporized volatile fluid mixed therewith.
Abstract:
Systems recover gas and/or heat and convert the recovered gas and/or heat to electrical power. The systems recover gas and/or heat from metal melting and/or smelting processes used in the manufacturing and/or refining of metals and/or their by-products. The recovered gas and/or heat are converted into electrical power. The heat of the metal melting and/or smelting process is converted to superheated liquid, such as steam, through a heat exchanger for operating a turbine motor and electrical power generator to produce electrical power. Flue gases from the melting and/or smelting processes used in the manufacturing and/or refining of metals and/or their by-products are utilized to drive a gas turbine motor and electrical power generator to produce electrical power. Electricity generated by the systems electrolyze water to form hydrogen gas and oxygen gas.
Abstract:
An apparatus and method is disclosed for recovering a flammable vapor emanating from a vent of a tank. The apparatus comprises an input conduit for connecting to the vent of the tank. An input manifold connects the input conduit to an input of a compressor with an output manifold connecting an output of the compressor to an input of a storage tank. An output conduit connects an output of the storage tank to the turbine generator for generating electrical power by processing the flammable vapor. An electrical connector directs electrical power from the turbine generator to drive the apparatus as well as to supply surplus power to an external load.
Abstract:
A method and an apparatus (100) for reducing the pressure of a natural gas (2) at a wellhead of a natural gas field. The method provides prearranging an energy recovery expansion device (20), which comprises a stator and a rotor mechanically connected with a power generator (29), and a gas passageway between the rotor and the stator, and conveying the natural gas into the passageway of the energy recovery expansion device (24) to cause a rotation of the rotor and the expansion of the gas, the pressure being reduced from the extraction pressure (P1) to the use pressure (P2), which makes it possible to obtain an electric power (W) during the expansion, adapted to satisfy the energy requirements of the gas extraction unit, in particular of an offshore platform, without installing local electric generators. In order to allow a reliable operation of a recovery expansion device, such as a turbine, a means is provided for finely separating solid and liquid matter present in the gas, as well as a means (7) for conditioning the gas entering the expansion device, which may comprise a feeding means (12) of an additive into the gas (3), said additive adapted to decrease the formation temperature of the solid, and, in an advantageous way in case of higher amount of water, a means for heating the gas such that the temperature is maintained above the formation temperature of the solid.
Abstract:
Two-stage exhaust apparatus for a reciprocating internal combustion engine having one or more cylinders each with at least one piston and at least one exhaust port, the apparatus including a first-stage jet port in each cylinder, the jet port configured to open to release high-pressure exhaust gas to a high-pressure motor prior to exhaust-port opening.
Abstract:
Provided is a turbine which handles fluids having a plurality of pressures with a single or integrated turbine wheel so that the number of components is reduced, and costs are reduced. Provided is an expansion turbine (1) equipped with a radial turbine wheel (15) that has a main path (23) that gradually increases in height and that axially discharges fluid that flows therein while swirling from a main inlet (27) located at the outer circumferential side into the main path (23), with a radial flow as a main component, wherein the radial turbine wheel (15) has a sub-path (25) branching off from the side of a hub (17) of the main path (23) at a position radially inward of the main inlet (27) and extending rearward from the main path (23), the sub-path (25) has, at an outer circumferential end thereof, a sub-inlet (35) that is located at a position in the radial direction different from the main inlet (27) and that is supplied with a fluid having a pressure different from the pressure of the fluid supplied through the main inlet (27), and the main inlet (27) and the sub-inlet (35) are partitioned by a back plate portion (26), in which the gap between it and the main path (23) or the sub-path (25) is adjusted.
Abstract:
Provided is a uni-axial multi-stage radial gas expander which has a high degree of reliability and which can sufficiently cope with the conditions of a high pressure and a high pressure ratio. Two or more radial gas expander sections (11A, 11B) formed of two-or-more-stage impeller vanes (14a to 14h) arranged between bearings (21a, 21b) on a rotor shaft (13) consisting of a single shaft are housed in a signal casing (10).