Abstract:
A thermal infrared camera may be used under a wide variety of target-scene radiation conditions, with interchangeable or zoom lenses requiring matching or different size cold stops. A variable aperture assembly of a thermal infrared camera integrates a rigid open truss-like framework that's capped by an aperture ring and bottomed by a driving ring, and a radiation shield, located inside the framework, that contains an aperture ring at an upper side. A plurality of blades that collectively define an aperture positioned between the upper aperture rings. Opposite blade ends are coupled to respective ones of the two aperture rings, permitting pivotal movement in one ring and radial movement in the other ring, when the rings are rotated relative to one another, to change the size of the formed aperture. Both refractive and reflective infrared telescopes may be retro-fitted with variable aperture devices to enhance infrared imaging performance.
Abstract:
An external optical relay assembly to allow an infrared camera with a fixed aperture to be used with a variety of fore optics, including refractive compound lenses, reflective telescopes, and reflective/refractive lenses, by providing an external, cooled aperture, that can be adjusted to provide effective f-number matching to the fore optic, allowing any f-number fore optic to be used with the infrared camera. This allows users of large families of similar telescopes, for example, to use their inventory of infrared Ritchie-Chrétien telescopes with a single infrared camera, regardless of f-numbers.
Abstract:
A continuously variable diaphragm or swappable fixed aperture for use in thermal infrared cameras, which aperture or diaphragm can be cooled to cryogenic temperatures. The invention contemplates mounting aperture control means, if necessary, in a vacuum or extending the control mechanism through a vacuum in a thermally isolated manner to avoid radiation load on the photocell. The inventive method implements such a diaphragm and control system. The invention makes possible the object of using a single thermal infrared camera under a wide variety of target-scene radiation conditions that may be rapidly changing, with interchangeable or zoom camera lenses requiring matching or different size cold stops, and under other such dynamic situations.
Abstract:
An infrared imaging device includes a board which is movable inside the infrared imaging device, plural kinds of magnification lenses, and plural kinds of infrared light radiation parts which radiate infrared lights having respective radiation temperatures, wherein the lenses and the infrared light radiation parts are situated on the board.
Abstract:
An optical pathway of a scanning spectral radiometer for a continuous monitoring of spectral radiation employs a diffuser having an upper source directed surface and a lower sensor directed surface for diffusing radiation incident on the upper surface and transmitting the diffused radiation. An occulting ring laterally surrounds the diffuser. A filter receives the diffused radiation from the light diffuser and passes a predetermined wavelength range. A photodetector is positioned to receive the filtered radiation. The photodetector is positioned at one end of an optical path, with a diffuser being positioned at the other end of the optical path. A collimator is provided between the diffuser and the photodetector, with the optical path extending through the collimator.
Abstract:
An atmosphere of ammonia that absorbs infrared light in a wavelength band overlapping with the measurement wavelength band of a radiation thermometer is formed in a chamber in which a semiconductor wafer is thermally treated. A filter that selectively transmits infrared light having a wavelength not overlapping with the absorption wavelength band of ammonia is installed between an optical lens system and a detector of the radiation thermometer to avoid influence of the infrared light absorption by ammonia. A conversion table corresponding to the installed filter is selected from a plurality of conversion tables representing a correlation between energy of infrared light incident on the radiation thermometer and temperature of a black body, and is used at the radiation thermometer. Accordingly, the temperature of the semiconductor wafer can be accurately measured in the atmosphere of ammonia.
Abstract:
A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.
Abstract:
A variable aperture assembly for an infrared camera for use with optics having two or more f-numbers. The variable aperture assembly includes a variable iris disposed substantially along an axis of the infrared camera and is thermally connected to a cooling assembly. The variable iris is capable of causing an infrared radiation admitting opening to vary in size. The infrared radiation admitting openings of the variable aperture assembly can be circular or non-circular, including generally rectangular or racetrack shaped openings. The variable aperture assembly provides f-number matching by adjusting the infrared radiation admitting opening to the size necessary to effectively match the numerous f-numbers of the optics, or by adjusting to a size so that a fixed aperture on the radiation shield becomes the effective aperture stop, providing the f-number matching.
Abstract:
An external optical relay assembly to allow an infrared camera with a fixed aperture to be used with a variety of fore optics, including refractive compound lenses, reflective telescopes, and reflective/refractive lenses, by providing an external, cooled aperture, that can be adjusted to provide effective f-number matching to the fore optic, allowing any f-number fore optic to be used with the infrared camera. This allows users of large families of similar telescopes, for example, to use their inventory of infrared Ritchie-Chrétien telescopes with a single infrared camera, regardless of f-numbers.