Abstract:
A shear stress sensor for use within a substrate exposed to a fluid flow. The sensor comprising a cavity defined within the substrate; electrolyte fluid within the cavity; and an amperometric system further comprising oppositely disposed first and second electrodes within the cavity for measuring current flow between the first and second electrodes, wherein fluid motion within the cavity is responsive to shear stress and measured current flow is responsive to the fluid motion.
Abstract:
A compliant tactile sensor may include sponge-like material, a flexible skin, and a fluid pressure sensor. The flexible skin may have a shape, absorb fluid, compress in response to force applied to the sponge-like material, and decompress and return to its original shape when the force is removed. The flexible skin may cover an outer surface of the sponge-like material. The fluid pressure sensor may sense changes in pressure in fluid that is within the sponge-like material caused by a force applied to the flexible skin. A robotic system may include a movable robotic arm, a compliant tactile sensor on the movable robotic arm that senses contact between the compliant tactile sensor and an object during movement of the movable robotic arm and that cushions the effect of that contact, and a reflex system that causes the moveable robotic arm to move in response to commands.
Abstract:
A first substrate that includes pressure sensors which are disposed in plural around a reference point; an approximately hemispherical elastic protrusion that is positioned so that the center of the elastic protrusion is approximately disposed in a position which is overlapped with the reference point, and is elastically deformed by an external force; and a second substrate that is separated from the elastic protrusion and installed on a side which is opposite to the first substrate are provided. When the external force is applied, a predetermined calculation is performed by using a pressure value which is detected through each pressure sensor, and the direction and the intensity of the applied external force are obtained.
Abstract:
One embodiment of the user interface system comprises: A tactile layer defining a tactile surface touchable by a user and plurality of deformable regions operable between a retracted state, wherein the deformable regions are flush with an undeformable region of the tactile layer; and an expanded state, wherein the deformable regions are proud of the undeformable region. A substrate joined to the undeformable region and defining a fluid port per deformable region and a fluid channel. A displacement device displacing the fluid through the fluid channel and the fluid ports to transition the deformable regions from the retracted state to the expanded state. A first and a second pressure sensor detecting changes in fluid pressure within the fluid due to a force applied to a particular deformable region. A processor determining the particular deformable region to be location of the input force based upon the detected fluid pressure changes.
Abstract:
A sensor pad for controlling the deployment of an automobile airbag. Weight sensing pad 10 is used in the seat 54 of an automobile, (not illustrated), to detect the presence of an occupant on the seat. Weight sensing pad 10 is used in conjunction with the vehicle's airbag control module in order to allow deployment of the airbag, in the event of a collision, only if the seat is occupied by a person of a preselected weight. Weight sensing pad 10 is defined by a bladder member 15 having an interior volume subdivided into a plurality of individual cells 42 in fluid communication with each other and that is filled with a non-compressible fluid 18, such as silicon or a silica gel of medium viscosity. A pressure tube 22 is in fluid communication with bladder 15 and is in further fluid communication with a pressure activated electronic transducer 26 which in turn is in electronic communication with the airbag controller 30.
Abstract:
Pressure sensing devices for use with an inflatable bladder and monitoring apparatus for an at rest subject are disclosed herein. The device can comprise a housing comprising a recess and configured to be welded in a seam of the inflatable bladder. A pressure sensor can be located within the recess with a sensing side configured to be exposed to the cavity of the inflatable bladder and a reference side configured to be exposed to ambient air. A printed circuit board can be located within the recess and coupled to the pressure sensor. The pressure sensor is operable to detect a pressure change within the cavity due to a force exerted by a subject on the inflatable bladder.
Abstract:
A keyboard includes a cover, a base facing and contacting the cover, at least one key, and a micro-electro-mechanical sensor (MEMS) module. The base and the cover define a space for receiving the MEMS module. The at least one key is movably formed on the cover. The MEMS module is sandwiched between the base and the cover and includes a bag, a connecting tube, and a sensor. The bag is resisted with the at least one key. The connecting tube is connected to the bag at one end and communicates with the bag. The sensor is connected to the other end of the connecting tube and communicated with the bag via the connecting tube to generate pressure signals according to a pressure from the key to the bag.
Abstract:
A sensor for measuring a force is provided, which sensor includes a first sealed volume, a second sealed volume, a pressure diaphragm and a force diaphragm. The pressure diaphragm has a first side and a second side, with a pressure of the first sealed volume acting on the first side, and a pressure of the second sealed volume acting on the second side. The force diaphragm is exposed to a force, and the pressure of the first volume is dependent on the force acting on the force diaphragm.
Abstract:
An improved pressure-based weight estimation system that includes an adaptive technique for reliably and accurately determining the vacant, or unoccupied, seat pressure. The vacant seat pressure is initially determined by a factory calibration procedure, and is thereafter suitably updated by an adaptive learning algorithm based on temperature, time, and the measured pressure. If the seat temperature is within a normal range, and the measured pressure remains at least a predetermined amount below the calibrated vacant seat pressure for at least a predetermined time, a fraction of the difference between the measured and calibrated values is subtracted from the calibrated value to form a new calibration value. The predetermined difference amount determines the sensitivity of the control, and the predetermined time prevents adaptive correction of the calibration value due to transient pressure conditions.
Abstract:
A trailer coupling including an intermediate unit to be inserted between a standard-type connecting coupling and a trailing vehicle and having integrated therein a force measuring cell for determining vertical forces. Furthermore, horizontal pushing and pulling forces may be determined by integrating at least one force measuring cell acting in horizontal direction. The fifth wheel coupling of semi-trailers may have integrated force measuring cells measuring forces acting in vertical, longitudinal, horizontal and/or lateral horizontal directions.