Abstract:
Some embodiments include methods of forming plasma-generating microstructures. Aluminum may be anodized to form an aluminum oxide body having a plurality of openings extending therethrough. Conductive liners may be formed within the openings, and circuitry may be formed to control current flow through the conductive liners. The conductive liners form a plurality of hollow cathodes, and the current flow is configured to generate and maintain plasmas within the hollow cathodes. The plasmas within various hollow cathodes, or sets of hollow cathodes, may be independently controlled. Such independently controlled plasmas may be utilized to create a pattern in a display, or on a substrate. In some embodiments, the plasmas may be utilized for plasma-assisted etching and/or plasma-assisted deposition. Some embodiments include constructions and assemblies containing multiple plasma-generating structures.
Abstract:
Provided are a multi-display apparatus and a method of manufacturing the multi-display apparatus. The method includes preparing a pair of unit panels respectively comprising display devices, etching main bodies of the pair of unit panels, and connecting the pair of unit panels so that etched portions of the main bodies of the unit panels overlap in a thickness direction of the unit panels.
Abstract:
A plasma display panel and the manufacturing method thereof. Forming partition wall structures on the back substrate of the paste display panel and forming the column-shaped protrusions at the positions corresponding to the cuts on the rib on the front substrate of the plasma display panel. The manufacturing process is simple and the alignment of the front and back substrate is easy. In addition, the size of the opening of the rib and the size of the cut can be easily adjusted according to the needs of the application during the manufacturing process.
Abstract:
A method for manufacturing a display, where the display includes a light-transmissive substrate adhering to a display substrate that forms a display surface side of a display body. An edge of at least either an adhesion surface of the display substrate or an adhesion surface of the light-transmissive substrate is coated with an adhesive. The display substrate and the light-transmissive substrate are positioned in an offset manner to provide overlapping and non overlapping regions. For example, an edge of each of two adhesion surfaces overlap with each other, and other regions do not overlap with each other. The display substrate and the light-transmissive substrate are relatively moved to a position where an edge of the display substrate and an edge of the light-transmissive substrate respectively overlap with other edges in a state in which adhesive reservoirs are formed while maintaining a fixed gap between the two adhesion surfaces.
Abstract:
A method of manufacturing plasma display panels using a substrate holder for deposition on a substrate of the plasma display panel. The substrate holder is configured with plural frames, and the substrate of the plasma display panel is held by its periphery with at least one of these frames. A frame holding the substrate has a protrusion extending to a non-deposition face of the substrate held in such a way as to surround the substrate. Since the protrusion acts as a blocking sheet, attachment of a deposition material passing through an opening on the substrate holder and reaching onto the non-deposition face of the substrate is suppressed.
Abstract:
A plasma display device having a plasma display panel (PDP) including: a plurality of electrodes; a printed circuit board assembly (PBA) to drive the plasma display panel (PDP); and a chassis base including a first surface supporting the plasma display panel (PDP) and a second surface mounted with the printed circuit board assembly (PBA), wherein the PDP includes signal lines and a power line continuously formed on an edge of the PDP, electrode terminals connected to the electrodes the signal lines and the power lines, signal line terminals disposed on one side of the electrode terminals and connected to the signal lines, an alignment mark formed on at least at one side of the signal line terminals, and a power terminal disposed on a side of the alignment mark connected to the power line and supplying power to the PDP.
Abstract:
An optical film includes a near-infrared absorbing layer, the near-infrared absorbing layer containing at least one colorant having a maximum absorption wavelength in the range of 900 nm to 1,100 nm, and a transparent copolymer resin containing fine rubber particles.
Abstract:
An optical sheet, which can suitably absorb external light over a wide range and can improve a contrast, a display device, and a method for producing an optical sheet. The optical sheet is disposed on an observer side relative to an image light source and includes: a plurality of layers that control light emitted from the image light source to emit the light on the observer side, wherein at least one of the plurality of layers is an optical functional sheet layer which includes prisms being arranged in parallel along the surface of the optical sheet whereby light can be transmitted and wedge portions are arranged in parallel between the prisms whereby light can be absorbed. At least one of the plurality of layers other than the optical functional sheet layer is a light-absorbing layer.
Abstract:
Disclosed is a Plasma Display Panel (PDP). According to an example, the PDP includes a panel, a base film in the front surface of the panel, and an Electro Magnetic Interference (EMI) shielding film in the base film. Another example of the PDP includes a panel with a panel grounding unit in the front surface, a base film in the front surface of the panel, an EMI shielding film on the base film, a back cover surrounding the panel, and a grounding unit for electrically connecting the panel grounding unit to the back cover. The panel grounding unit and the grounding unit are connected through a conductive substance. The PDP of this research can protect the panel from being damaged by the grounding unit and reduce production costs. Also, it can increase EMI shielding rate by grounding the EMI absorbed in the EMI shielding film.
Abstract:
A plasma display device has a reduced number of components, thereby lowering manufacturing costs, improving productivity of assembly, and reducing a weight thereof. The display device includes a PDP module; a front frame positioned in front of the PDP module and having an opening; a rear cover covering a rear side of the PDP module to shield electromagnetic waves; a front filter positioned to face the opening of the front frame to shield the electromagnetic waves; and a shielding member positioned along a periphery of the PDP module to shield the electromagnetic waves. The front filter has a rear side supported by the PDP module.