Abstract:
An X-ray inspection system of the present application is capable of blocking the effect of heat from an X-ray source, thereby making it possible to place a heat-sensitive circuit component in the same housing space as the X-ray source. The X-ray inspection system includes a housing 10 provided with an upper housing space 11, in which an X-ray source 32 housed in a cooling container 30 is placed. Due to pressure of a pump 36, a cooling medium circulates between the cooling container 30 and a heat radiating device 33, thereby suppressing the temperature rise of the cooling container 30. Since the cooling container 30 is placed in the upper housing space 11, the upper housing space 11 serves as a cooling space, suppressing the temperature rise. Therefore, heat-sensitive or heat-producing circuit components can be placed in the upper housing space 11.
Abstract:
A rotating union for an X-ray target is provided. The rotating union for the X-ray target comprises a housing, a coolant-slinging device comprising a rotating shaft having an inner diameter and an outer diameter, a proximal end and a distal end, and a bore therein, one or more slingers coupled to a proximal end of the rotating shaft; a drain annulus coupled to the one or more slingers, wherein the one or more slingers are configured to direct a coolant to the drain annulus and the drain annulus is configured to direct the coolant through a primary coolant outlet; and a stationary tube having a first end and a second end, wherein at least a portion of the stationary tube is disposed within the bore of the rotating shaft.
Abstract:
A system and method for reducing or eliminating pump cavitation in a closed system having at least one or a plurality of fluid phase changes. The system comprises a venturi having a throat which is coupled to a reservoir tank.
Abstract:
The invention relates to a miniature X-ray source device connected to a distal end of a guiding wire for insertion towards a desired location within an animal body for effecting radiation therapy, said X-ray source device at least comprising a vacuum tube accommodated in said housing containing a cathode and an anode spaced apart at some distance from each other; electron freeing means for freeing electrons from the cathode; electric field means for applying during use a high-voltage electric field between said cathode and said anode for accelerating said free electrons; said vacuum tube being at least partly transparent to X-ray radiation emitted by said anode, as well as cooling means for cooling at least said anode. It is an object to provide a miniature X-ray source device having further limited constructional dimensions and an improved control of the working temperature of at least the anode and hence the working conditions of the miniature X-ray source device. According to the invention the miniature X-ray source device is hereto characterised in that said cooling means are cryogenic cooling means. More in particular in a specific embodiment of said miniature X-ray source device said cooling means comprise at least one supply passageway for supplying pressurized gas towards said anode and at least one exhaust passageway for exhausting said pressurized gas from said anode, said supply passageway and said exhaust passageway being interconnected by means of an expansion chamber surrounding at least partly said anode.
Abstract:
A liquid metal or spiral groove bearing structure for an x-ray tube and associated process for manufacturing the bearing structure is provided that includes a bearing shaft rotatably disposed in a bearing housing or shell. The shell includes a thrust seal engaged with a sleeve to maintain co-axiality for the rotating liquid metal seal formed in the shell about the shaft. The shaft has a bore for the introduction of a cooling fluid into the bearing assembly in which is disposed a cooling tube. The cooling tube includes turbulence-inducing features to increase the turbulence of the cooling fluid flowing through the cooling tube, consequently enhancing the heat exchange between the cooling fluid and the shaft. This maximizes the heat transfer from the shaft to the oil, allowing materials with lower thermal conductivities, such as non-refractory materials, to be used to form the bearing shaft and shell.
Abstract:
An imaging module includes a plurality of cathodes and respective gates, each cathode configured to generate a separate beam of electrons directed across a vacuum chamber and each gate matched to at least one respective cathode to enable and disable each separate beam of electrons from being directed across the vacuum chamber. A target anode is fixed within the vacuum chamber and arranged to receive the separate beam of electrons from each of the plurality of cathodes and, therefrom, generate a beam of x-rays. A deflection system is arranged between the plurality of cathodes and the target anode to generate a variable magnetic field to control a path followed by each of the separate beams of electrons to the target anode.
Abstract:
An X-ray inspection system of the present application is capable of blocking the effect of heat from an X-ray source, thereby making it possible to place a heat-sensitive circuit component in the same housing space as the X-ray source. The X-ray inspection system includes a housing 10 provided with an upper housing space 11, in which an X-ray source 32 housed in a cooling container 30 is placed. Due to pressure of a pump 36, a cooling medium circulates between the cooling container 30 and a heat radiating device 33, thereby suppressing the temperature rise of the cooling container 30. Since the cooling container 30 is placed in the upper housing space 11, the upper housing space 11 serves as a cooling space, suppressing the temperature rise. Therefore, heat-sensitive or heat-producing circuit components can be placed in the upper housing space 11.
Abstract:
A mechanism for cooling the anode of an x-ray tube using a phase change material to transfer heat away from the anode. The x-ray tube is joined to a sealed heat exchange chamber which contains a liquid metal as a liquid to vapor phase change material (L-V PCM). The back side of the anode is exposed to an interior of the heat exchange chamber, and a jet sprayer inside the heat exchange chamber sprays a liquid of the metal onto the back side of the heated anode. The L-C PCM evaporates on that surface to carry away the heat, and the vapor then condenses back into the liquid on the cool surfaces of the heat exchange chamber. The surfaces of the heat exchange chamber may be cooled by convection cooling. Optionally, pipes containing a circulating cooling fluid may be provide inside the heat exchange chamber.
Abstract:
An imaging module includes a plurality of cathodes and respective gates, each cathode configured to generate a separate beam of electrons directed across a vacuum chamber and each gate matched to at least one respective cathode to enable and disable each separate beam of electrons from being directed across the vacuum chamber. A target anode is fixed within the vacuum chamber and arranged to receive the separate beam of electrons from each of the plurality of cathodes and, therefrom, generate a beam of x-rays. A deflection system is arranged between the plurality of cathodes and the target anode to generate a variable magnetic field to control a path followed by each of the separate beams of electrons to the target anode.
Abstract:
A system and method for reducing or eliminating pump cavitation in a closed system having at least one or a plurality of fluid phase changes. The system comprises a venturi having a throat which is coupled to a reservoir tank.