Abstract:
A transmission line apparatus includes: a substrate 101 with a ground conductor plane; and first and second signal strips 102a, 102b supported on the substrate 101 in parallel with each other. The apparatus further includes at least one additional capacitance element 301 that connects the first and second signal strips 102a, 102b together. The element 301 includes: a first additional conductor 303 spaced from the first signal strip 102a; a second additional conductor 305 spaced from the second signal strip 102b; and a third additional conductor 307 connected to the first and second additional conductors 303, 305 at respective points. When measured in a signal transmission direction, the smallest width W3a of the third additional conductor 307 is shorter than the length L1 or L2 of the first or second additional conductor 303 or 305. And the additional capacitance element 301 has a resonant frequency that is higher than the frequency of a signal being transmitted.
Abstract:
A transmission line apparatus includes: a substrate 101 with a ground conductor plane; and first and second signal strips 102a, 102b supported on the substrate 101 in parallel with each other. The apparatus further includes at least one additional capacitance element 301 that connects the first and second signal strips 102a, 102b together. The element 301 includes: a first additional conductor 303 spaced from the first signal strip 102a; a second additional conductor 305 spaced from the second signal strip 102b; and a third additional conductor 307 connected to the first and second additional conductors 303, 305 at respective points. When measured in a signal transmission direction, the smallest width W3a of the third additional conductor 307 is shorter than the length L1 or L2 of the first or second additional conductor 303 or 305. And the additional capacitance element 301 has a resonant frequency that is higher than the frequency of a signal being transmitted.
Abstract:
A highly compact band pass filter that has excellent mechanical strength is disclosed. A band pass filter according to the present invention employs a dielectric block of substantially rectangular prismatic shape constituted of a first portion lying between a first cross-section of the dielectric block and a second cross-section of the dielectric block substantially parallel to the first cross-section and second and third portions divided by the first portion and metal plates formed on surfaces of the dielectric block. The first portion of the dielectric block and the metal plates formed thereon are enabled to act as an evanescent waveguide. The second portion of the dielectric block and the metal plates formed thereon are enabled to act as a first resonator. The third portion of the dielectric block and the metal plates formed thereon are enabled to act as a second resonator. The metal plates include at least one exciting electrode formed on a first surface of the dielectric block which has the widest area. Thus a wide band characteristics can be obtained whereas the very thin dielectric block is used. Further, a high unloaded quality factor (Q0) can be obtained because the radiation loss is lowered when the thickness of the dielectric block is reduced.
Abstract:
A highly compact bandpass filter that has excellent mechanical strength is disclosed. A bandpass filter according to the present invention employs a dielectric block of substantially rectangular prismatic shape constituted of a first portion lying between a first cross-section of the dielectric block and a second cross-section of the dielectric block substantially parallel to the first cross-section and second and third portions divided by the first portion and metal plates formed on surfaces of the dielectric block. The first portion of the dielectric block and the metal plates formed thereon are enabled to act as an evanescent waveguide. The second portion of the dielectric block and the metal plates formed thereon are enabled to act as a first resonator. The third portion of the dielectric block and the metal plates formed thereon are enabled to act as a second resonator. The metal plates include an inductive stub formed on the surface of the first portion of the dielectric block.
Abstract:
A highly compact and easily fabricated band pass filter is disclosed. A band pass filter according to the present invention employs a first half-wave (null/2) resonator having a first open end on which an input terminal is formed and a second open end opposite to the first open end, a second half-wave (null/2) resonator having a third open end on which an output terminal is formed and a fourth open end opposite to the third open end, and an evanescent waveguide interposed between the second open end of the first resonator and the fourth open end of the second resonator. The first half-wave (null/2) resonator, the second half-wave (null/2) resonator, and the evanescent waveguide being single-unit. An air gap does not have to be formed by mounting components on a printed circuit board. Therefore, the overall size of the band pass filter can be miniaturized and fabrication of the band pass filter is simplified.
Abstract:
A semiconductor band pass filter is disclosed. The filter is an integrated circuit device having a semiconductor layer with a ground plane on one face and an insulating layer and an overlying conductive line on the other face. The semiconductor layer includes near the insulating layer a highly doped region which may have substantially the same pattern as the conductive line. The passed band can be selected by varying the doping level of the doped region.
Abstract:
According to various aspects, exemplary embodiments are disclosed of thermal interface materials including electrically-conductive material, shields including thermal interface materials, and related methods. In an exemplary embodiment, a thermal interface material generally includes a top surface, a bottom surface, and one or more outer side surfaces extending between the top and bottom surfaces. Electrically-conductive material is along and/or adjacent the one or more outer side surfaces. The thermal interface material may be configured to be operable as a waveguide through which energy below a cutoff frequency cannot flow. The electrically-conductive material may be parallel with a direction of heat flow from a heat source to a heat removal/dissipation structure when the bottom surface is positioned against or adjacent the heat source and the top surface is positioned adjacent or against the heat removal/dissipation structure.
Abstract:
The tunable bandpass filter is used for filtering an electromagnetic signal, has a system passband between a first and a second tunable cutoff frequencies, and has a first subfilter and a second subfilter connected to one another in series between an input port and an output port and being complementary to one another in the tunable bandpass filter. At least one of the first subfilter and the second subfilter being connected to operate in reflection.