Abstract:
The invention provides a wireless transmission apparatus, a phase compensating apparatus, and a phase compensating method thereof. The phase compensating apparatus includes main transmission wire, a plurality of capacitors, and at least one phase compensating unit. The main transmission wire is coupled between the output end of the power amplifier and the input end of the impedance matching apparatus. A first end of each of the capacitors is coupled to the main transmission wire. The phase compensating unit has two ends for being coupled to second ends of two of the capacitors.
Abstract:
Processing of MLD control packets in an access point (AP) connected to a digital network. According to the present invention, an AP in a network converts MLD queries from multicast to unicast and sends these unicast packets to each client of the AP. These MLD query packets may be filtered or restricted by per-user client rules These MLD query packets may also be tagged as high priority packets to speed their delivery. The AP also suppresses the retransmission of MLD Join packets to clients of the AP.
Abstract:
A method for detecting at least two amplitude-modulated transmitted signals contained in a received signal within the same frequency channel with respectively different frequency displacements, which determines from the received signal a modified received signal by means of a nonlinear signal processing. Following this, the spectrum of the modified received signal is determined by means of Fourier transform, and at least two transmitted signals contained in the received signal are detected if at least two first spectral lines each associated with carrier signals are significantly distinguishable within the determined spectrum from spectral components associated with noise signals and payload signals.
Abstract:
In a reset period of a first stage, a switching circuit is turned on, and high-level driving voltages are output from driving circuits. In a charge transfer period subsequent to the reset period, the switching circuit is turned off, and low-level driving voltages are output from the driving circuits. It is determined whether or not an output voltage of an amplifier circuit in the charge transfer period is included in a normal range. In the inspection of a second stage subsequent to the first stage, in the same manner as in the normal measurement, voltages having opposite phases are output from the driving circuits in the reset period and the charge transfer period, and it is determined whether or not the output voltage of the amplifier circuit in the charge transfer period is included in a normal range.
Abstract:
The invention provides a wireless transmission apparatus, a phase compensating apparatus, and a phase compensating method thereof. The phase compensating apparatus includes main transmission wire, a plurality of capacitors, and at least one phase compensating unit. The main transmission wire is coupled between the output end of the power amplifier and the input end of the impedance matching apparatus. A first end of each of the capacitors is coupled to the main transmission wire. The phase compensating unit has two ends for being coupled to second ends of two of the capacitors.
Abstract:
A computer device (200) includes a deployment unit (220) which deploys an application program (100) into a runtime execution environment (203) based on configuration information from a plurality of configuration files (120), including at least one base configuration file (122) and one or more supplementary configuration files (123), wherein a merge unit (220) uses the one or more supplementary configuration files (123) to act upon and modify the configuration information provided in the base configuration file (122). A method of providing configuration files in a computer device (200) includes modifying configuration information provided in the base configuration file (122) using the one or more supplementary configuration files (123) to provide a merged configuration file (124), and deploying the application program (100) into the runtime execution environment (203) based on configuration information from the merged configuration file (124).
Abstract:
An integrated circuit haying normal and special operating modes includes a mode entry interlock (201) which is enabled by an initialization command and an externally supplied voltage at a first I/O terminal (204) to detect a conflict at the I/O terminal for reducing the likelihood of inadvertent entry into the special operating mode. The mode entry interlock also includes a second I/O terminal (212) for receiving a disassociated software command to enter into the special operating mode, and mode control logic (210, 216) for evaluating the received software command against any detected conflict at the I/O terminal to generate a special operating mode enable signal in response to receiving the first and second input signals only when the detected logic state conflicts with the first logic state.
Abstract:
A computer device (200) includes a deployment unit (220) which deploys an application program (100) into a runtime execution environment (203) based on configuration information from a plurality of configuration files (120), including at least one base configuration file (122) and one or more supplementary configuration files (123), wherein a merge unit (220) uses the one or more supplementary configuration files (123) to act upon and modify the configuration information provided in the base configuration file (122). A method of providing configuration files in a computer device (200) includes modifying configuration information provided in the base configuration file (122) using the one or more supplementary configuration files (123) to provide a merged configuration file (124), and deploying the application program (100) into the runtime execution environment (203) based on configuration information from the merged configuration file (124).
Abstract:
Processing of MLD control packets in an access point (AP) connected to a digital network. According to the present invention, an AP in a network converts MLD queries from multicast to unicast and sends these unicast packets to each client of the AP. These MLD query packets may be filtered or restricted by per-user client rules These MLD query packets may also be tagged as high priority packets to speed their delivery. The AP also suppresses the retransmission of MLD Join packets to clients of the AP.