Abstract:
A wellbore intervention tool conveyance system includes an upper pipe injector disposed in a pressure tight housing. The upper injector has a seal element engageable with a wellbore intervention tool and disposed below the injector. The upper housing has a coupling at a lower longitudinal end. A lower pipe injector is disposed in a pressure tight housing, the lower housing has well closure elements disposed above the lower pipe injector. The lower housing is configured to be coupled at a lower longitudinal end to a subsea wellhead. The lower housing is configured to be coupled at an upper longitudinal end to at least one of (i) a spacer spool disposed between the upper pipe injector housing and the lower pipe injector housing, and (ii) the lower longitudinal end of the upper pipe injector housing.
Abstract:
The present invention relates to a motion compensation system for an element hanging from a mobile unit, the system comprising two blocks, at least two articulated arms, a compensation cylinder and a cable. According to the invention, at least one characteristic length of the articulated system (for example: the length of a link or the distance between two sheaves of two articulated arms) is adjusted according to the motion to be compensated for.
Abstract:
An offshore drilling vessel includes a main deck, a moonpool a firing line hoist system having a tower, a BOP transport system and a pivotally supported U-shaped working deck. The U-shaped working deck can be pivoted between an active position, in which it extends in a substantially horizontal direction such that it covers a portion of the moonpool, and a non-active position, in which it extends in a substantially vertical direction such that it provides room for a BOP to be moved by the BOP transport system from a storage position adjacent the moonpool into a launch position above the moonpool, in which launch position the BOP is located between the tower and the working deck.
Abstract:
A heave compensating system for a marine vessel includes a hydraulic machine configured to be coupled to a load suspended from the vessel and to vary the distance between the load and the vessel in response to heaving motion of the vessel. The system further includes a second hydraulic machine in fluid communication with a hydraulic accumulator, both the first and second hydraulic machines are mechanically connected to one another and a shared electric motor, and a controller configured to control hydraulic movement of the first and second hydraulic machines and to control the supply of power to the electric motor.
Abstract:
A system compensates for heave induced pressure fluctuations on a floating rig when a drill string or tubular is lifted off bottom and suspended on the rig, such as when tubular connections are made during MPD, tripping, or when a kick is circulated out during conventional drilling. The system also compensates for heave induced pressure fluctuations on a floating rig when a riser telescoping joint located below a RCD is moving while drilling.
Abstract:
A device for connecting and disconnecting an active compensator actuator or additional passive compensator actuators from a passive compensated load bearing unit during operation and at static suspended condition. The device comprises a connection arrangement (7), which is operatively connected to a crown block. The connection device (7) is adapted to selectively grip a second end (18) of the heave compensator actuator (1). The device comprises further a safety arrangement (6) which are adapted to selectively grip the second end (18) of the heave compensator actuator (1) when it is not in engagement with the connection arrangement (7), the device comprises also a support arrangement (2), which is adapted to support the heave compensator actuator when it is not connected to the crown block (8).
Abstract:
A motion compensation system is provided for controlling relative movements between a floating vessel and an elongate element, where the elongate element is suspended by the vessel at a first end and extends into a body of water below the floating vessel. An active motion compensator is connected to the elongate element first end via an element arranged in an upper region of an erect support structure and a passive motion compensator is connected to the elongate element first end via the element. The motion compensators are structurally and operationally separate and independent units and are configured for separate and mutually independent operation.
Abstract:
A drilling vessel or drilling platform comprising: a hull with a moonpool; and a hydraulic riser tensioner system configured to apply a tension force from the drilling vessel or drilling platform upon a riser string, the riser tensioner system comprising: a riser ring, wherein the riser tensioner system is fastened to the riser string via the riser ring; a set of sheaves provided at each lateral side of the moonpool; a plurality of cables configured to extend between the drilling vessel or drilling platform to the riser ring via the sheaves; and a set of hydraulic cylinders actuating upon the sheaves and thereby applying the tension force to the cables, wherein the hydraulic cylinders are arranged substantially horizontally at the lateral sides of the moonpool.
Abstract:
A heave motion compensator (30, 40, 70, 100, 140, 300) for compensating heave motions comprises a cylinder (41) and a piston (44) delimiting a variable volume fluid chamber (49) in said cylinder (41), wherein said piston (44) can oscillate within said cylinder (41), said piston (44) being provided with a seal (48) frictionally engaging said cylinder. The compensator further includes a motor (65) that causes said seal (48) to revolve relative to said cylinder (41) so as to obtain a dynamic friction regime between the seal (48) and the cylinder (41). In a possible embodiment the motor (65) is arranged to rotate said piston (44), and the seal (48) is mounted on said piston (44) so as to rotate along with said piston (44).