Abstract:
A discharge lamp includes a luminous bulb in which a luminous material is enclosed and a pair of electrodes are opposed in the luminous bulb; and a pair of sealing portions for sealing a pair of metal foils electrically connected to the pair of electrodes, respectively. At least one of the pair of sealing portions is provided with at least one constricted portion whose length in a thickness direction of the metal foil in the sealing portion is smaller than that of other portions in the sealing portion.
Abstract:
In a foil sealed lamp, a lamp container made of transparent material, has at least one sealing portion made of molybdenum wherein a metallic foil is buried, a light emitting section which is connected to one end of the metallic foil and a lead rod extending outward and connected to other end of the metallic foil, and wherein, in the sealing portion, a gap formed around a circumference portion of the lead rod is filled with sealing agent made of rubidium oxide or cesium oxide, and glass having boron oxide and bismuth oxide as principal components is coated on an outer end surface of the sealing portion so as to close the gap.
Abstract:
The present invention is directed to the use of a molybdenum-rhenium alloy in the construction of sealing tubes for high pressure discharge lamps.
Abstract:
The invention relates to a tungsten electrode which causes minimal cracking when sealed in a quartz glass envelope. The invention includes forming a substantially uniform oxide coating on a selected portion of the shank of a tungsten electrode followed by reducing the oxide coating to substantially elemental tungsten, wherein the electrode exhibits superior properties when sealed in a lamp having a quartz glass envelope. The invention also includes the electrode made by the process.
Abstract:
A short arc discharge lamp in which the arc tube contains opposed cathode and anode electrodes with upholding parts that are inserted into a respective glass tube holding cylinder, and in which the glass tubes of the holding cylinders are secured in the side tubes at opposite sides of the arc tube by contracted areas, provides the peripheral surface of the holding cylinders with at least one section of reduced diameter to prevent the holding cylinders from moving, to prevent force from acting in a concentrated manner on the sealed areas and to prevent the lamp from being damaged when the lamp is shaken during transport or the like.
Abstract:
Short-arc discharge lamp designed to minimize the phenomenon of foil floating between the metal foil located in the foil sealing area and the sealing quartz component that is in contact with the inside of the metal foil so as to prevent cracks from forming in the foil sealing area, gas leakage from the lamp, and premature breaking of the lamp. The short-arc discharge lamp includes electrodes which are located in an emission space, a metal foil electrically connected to the electrodes, a quartz tube part which surrounds the metal foil, a sealing quartz component in contact with the inside of the metal foil, and a metallic component inserted into the sealing quartz component and electrically connected to the metal foil. The foil sealing area is formed from the metal foil, the quartz tube, and the sealing quartz component, which are sealed against one another. By the sealing action of the foil sealing area, sealing of the emission space is ensured. The short-arc discharge lamp has an electrical input power rating of greater than or equal to 4 kW and an operating pressure during luminous operation of greater than or equal to 2null106 Pa, and is operated using direct current. The above-mentioned characteristics are achieved in that the length of the area of a metallic component inserted into the sealing quartz component is greater than or equal to roughly 40% of the total length of the sealing quartz component.
Abstract:
A high-pressure discharge lamp having an arc tube that includes a main tube part and a pair of capillary tube parts is provided. The main tube part includes a pair of electrodes and a metal halide enclosed, and the pair of capillary tube parts is arranged at the of the main tube part. The pair of capillary tube parts is sealed by means of a seal member to a different one of the feeders, and supplies electricity to each of the electrodes. At least one of the feeders includes a first conductive member that is resistant to halides and sealed to the capillary tube part, and a second conductive member that is connected to the first conductive member outside the capillary tube part and fixed at an outer end of the capillary tube part by means of the seal member.
Abstract:
A fluorescent lamp having a stem provided with first and second lead wires for energization of an electrode and an electrically-insulating member provided therein with a first hole and a second hole larger in cross-sectional area than said second lead wire. The first and second lead wires are inserted in the first and second holes of the electrically-insulating member, respectively, and an outer diameter of a glass envelope of the fluorescent lamp is not smaller than 13 mm and not larger than 29 mm.
Abstract:
The invention provides a joined body of a first member 7 made of a metal and a second member 4 made of a ceramic or a cermet. The joined body comprises a joining portion 6 interposed between the first member 7 and the second member 4 for joining the member 7 and the member 4. The joining portion 6 comprises main phase 14 contacting the first member 7 and an intermediate ceramic layer 13 existing between the second member and the main phase 14 as well as contacting the second member 4. The main phase 14 is composed of a porous bone structure, with open pores and made of a sintered product of metal powder, and ceramic phase impregnated into the open pores in the porous bone structure. Herewith, the joined structure has resistance to fatigue and fracture, even when the structure is subjected to repeated thermal cycles between a high temperature, for example 1000null C. or higher, and room temperature.
Abstract:
A joined structure and joining method of a member of a ceramics or a cermet and a member of a metal such as molybdenum, in which the members may be joined with a high strength, the joined structure has improved air-tightness and resistance to corrosion and repeated thermal cycles does not result in the fracture of the joined structure. A joined body comprises a joining portion 6 interposed between a first member, made of a metal, and a second member 4, made of a ceramics or a cermet, for joining the first and second members. The joining portion 6 comprises main phase 14 contacting the first member and an intermediate glass layer 13 existing between the second member 4 and the main phase 14. The main phase 14 is composed of a porous bone structure 15, with open pores and made of a sintered product of metal powder, and glass phase 10 impregnated into the open pores in the porous bone structure. Preferably, the intermediate glass layer 13 and impregnated glass phase 10 is composed of glasses of the substantially same composition.