Abstract:
An electron-beam tube with an electron collector for an electron-beam entering the electron collector in an electron-beam direction. A plurality of large-area projections are provided for heat radiation including a funnel-shaped projection expanding in the electron-beam direction. The funnel-shaped projection includes a smaller opening which is one of directly and indirectly fastened to the collector and including an upstream projection including a surface which is first with respect to the electron-beam direction, the surface facing the arriving electron-beam and the surface being provided with low heat radiation properties. All other surfaces of the plurality of projections having high heat radiation properties higher than the low heat radiation properties. The collector and the plurality of projections being supported by a satellite as a travelling-wave tube with the electron collector radiating into space.
Abstract:
An electron gun device of the field emission type comprising an electron emitting cathode tip, a filament for heating the cathode tip, an anode, and a charged particle emitting electrode, in which charged particles are emitted from the electrode and bombard the anode surface to outgas the anode.
Abstract:
1,126,265. Cooling systems. COMPAGNIE FRANCAISE THOMSON HOUSTON-HOTCHKISS BRANDT. 7 July, 1966 [7 July, 1965], No. 30495/66. Heading F4U. A cooling system comprises an enclosure containing a vaporizable liquid and having one wall which is adapted to be exposed to a source of heat, internal projection on said one wall, means for sub-cooling the liquid so that vapour formed adjacent the projections will condense in the body of liquid and elastic means exposed to the liquid for damping pressure fluctuations caused by the vaporization and condensation process. As shown, an annular enclosure 3 surrounds a cylinder 1, e.g. the anode or collector of an electron discharge tube or the cylinder of an I.C. engine, having projections 5, the liquid in the enclosure is sub-cooled by a coil 6 and the elastic means comprises a partly inflated flexible annular body 20. A screen 21 and a filling hole having a stopper 10 are provided. The liquid may be sub-cooled externally of the enclosure (Figs. 5 and 6, not shown) and the screen may be perforated (Fig. 6). The cylinder to be cooled may be closed at one end and the surrounding enclosure bell-shaped (Figs. 1, 7 and 10, not shown). The elastic means may be partspherical and contained in either the enclosure (Fig. 1) or in a sub-chamber screwed into the filling hole in place of the stopper (Fig. 2, not shown); the sub-chamber may alternatively contain a flexible diaphragm (Fig. 3, not shown). In further embodiments (Figs. 7 and 10) the elastic means comprises a vapour pocket at the top of the enclosure. Formulµ for determining the configuration of the internal projections are given.
Abstract:
An electron beam emitter comprises a housing enclosing a cathode capable of emitting electrons within the housing and a window for allowing the emitted electrons to exit the housing, wherein the housing has an opening adapted to be at least partly engaged with a high voltage connector assembly, the assembly being adapted to connect the cathode to a power supply, the electron beam emitter further comprising a cooling flange surrounding the opening and having an interior channel extending between an inlet port and an outlet port for receiving cooling fluid for cooling the high voltage connector assembly. The invention further relates to a method of cooling an electron beam device.
Abstract:
An electron beam emitter comprises a housing enclosing a cathode capable of emitting electrons within the housing and a window for allowing the emitted electrons to exit the housing, wherein the housing has an opening adapted to be at least partly engaged with a high voltage connector assembly, the assembly being adapted to connect the cathode to a power supply, the electron beam emitter further comprising a cooling flange surrounding the opening and having an interior channel extending between an inlet port and an outlet port for receiving cooling fluid for cooling the high voltage connector assembly. The invention further relates to a method of cooling an electron beam device.
Abstract:
In a short arc type discharge lamp wherein a cathode and an anode are arranged oppositely to each other in an interior of a light emitting tube, said cathode having a portion with a decreasing diameter at a tip end thereof, and an emitter material buried in said cathode, such that said emitter material has an exposed portion being exposed in said cathode portion with a decreasing diameter, a distance in a radial direction of a center of said cathode from a periphery of the exposed portion of said emitter material varies in a circumferential direction, thus enabling the same electron radiation function as hitherto while reducing the use level of the emitter material.
Abstract:
A radiation source for generating electromagnetic radiation includes an anode, a cathode, and a discharge space. The anode and the cathode are configured to create a discharge in a substance in the discharge space to form a plasma so as to generate the electromagnetic radiation. The radiation source also includes a fuel supply constructed and arranged to supply at least a component of the substance to a location near the discharge space. The fuel supply is located at a distance from the anode and the cathode. The radiation source also includes a further supply constructed and arranged to create and/or maintain a cooling and/or protective layer on or near the anode and/or cathode.
Abstract:
The present invention provides a double helix coupled vane forward wave crossed-field amplifier utilizing individually cooled vanes in the RF slow-wave circuit. Specifically, a double helix coupled vane is machined to create a channel in the shape of a "U" on one side of the vane. A vane coolant tube formed in a corresponding U-shape is inserted and brazed to the machined vane. The vane assembly is then attached to the anode body of which the backwall has holes formed to accept the coolant tubes from each vane. Divided backwall coolant channels are brazed to the outside of the anode, thereby placing in fluid communication the coolant channels to the vane coolant tube. Accordingly, coolant is cycled through each vane tube and individual vanes of the anode are thus cooled.