Abstract:
An AC-discharge color plasma display panel has a matrix of unit discharge spaces which include unit discharge spaces for emitting light in the same color that are arranged along the scan electrodes, and sets of three adjacent unit discharge spaces for emitting light in three different colors that are arranged along the data electrode. Scan pulses and data pulses applied to the unit discharge spaces to generate writing discharges according to display information and pairs of sustaining pulses applied to the unit discharge spaces to generate and maintain sustaining discharges are controllable with respect to pulse durations, oscillation frequencies, voltages, etc. for each of the colors. A method of driving the AC-discharge color plasma display panel is also disclosed.
Abstract:
A plasma display panel including a pair of substrates comprises a mixture of discharge gases contained between the substrates; the mixture consists of neon gas, xenon gas and krypton gas, wherein a percentage content of the krypton gas is selected in the range from 1 to 14 percent of the mixture, whereby near-infrared rays radiated from the xenon gas during the gas discharge is retarded while the operational margin of the AC driving voltage is preferably maintained.
Abstract:
A plasma display apparatus which improves the contrast of images displayed thereon. A plurality of paired row electrodes Xi, Yi are formed in parallel with each other in a surface discharge AC plasma display apparatus. A plurality of column electrodes are formed facing to the paired row electrodes through a discharge space, and extend perpendicularly to the paired row electrodes so as to define a unit light emitting region including an intersection formed every time the column electrode cross with the paired row electrodes. A gas mixture including Ne.multidot.Xe is sealed in the discharge space at a pressure ranging from 400 torr to 600 torr. The row electrodes in the unit light emitting region are formed to have a width w of 300 .mu.m or more. The intensity of light emitted by discharge not related to display is suppressed.
Abstract:
A surface discharge plasma display apparatus comprising a plurality of pairs of column electrodes extending horizontally in parallel, and a plurality of row electrodes facing the column electrodes at a distance, said row electrodes extending perpendicularly to the column electrodes to define an emitting pixel region with the facing one pair of column electrodes, wherein at least one of the column electrodes in the pair comprises a base portion extending horizontally and a projecting portion extending perpendicularly from the base portion every emitting pixel region, wherein the length of the projecting portion is within the range from 400 .mu.m to 1000 .mu.m. In the surface discharge plasma display apparatus according to the present invention, the emitting efficiency is improved to increase the level thereof, the amount of the current which passes through each of the electrodes may be decreased, thereby the consumption power per emitting pixel region being decreased. Thus, the amount of the heat generated in a unit area of the plasma display apparatus may be decreased, so that the address failure of the emitting pixel region due to the generated heat may be prevented.
Abstract:
A plasma display panel (PDP) is disclosed which includes a plurality of anodes formed on an upper plate, a plurality of first sustaining electrodes and a plurality of alternating second sustaining electrodes and cathodes formed on a lower plate, and a dielectric coated on the first and second sustaining electrodes and cathodes. A method for driving the PDP includes the steps of initiating a discharge by supplying a potential higher than the discharge firing voltage to the anodes and cathodes, generating a predetermined potential between the cathodes and first sustaining electrodes to increase the voltage generated from the discharge-initiating step, supplying a voltage higher than a discharge sustaining voltage between the first and second sustaining electrodes to maintain the discharge, and supplying a narrow pulse to the cathodes for erasing the discharge.
Abstract:
Disclosed here is a panel structure for a large size display which utilizes the gas discharge panel called the surface discharge type panel. Among a pair of substrates arranged face to face in order to define the gas discharge space, the one substrate which is used as the electrode supporting substrate is composed of the composite substrate body where plurality of small size substrates which can be produced comparatively easily with high production yield are combined in such a form that the side edge surfaces of said substrates are aligned face to face, while the other substrate which is used as the covering substrate is composed of a large size single substrate in such a size same as said composite substrate body. Such substrate structure realizes a large size gas discharge panel having a high production yield, without requiring the large scale production facility.
Abstract:
Sustain electrodes and a transparent dielectric layer covering the sustain electrodes are formed on the rear-facing face of the front glass substrate. A plurality of first additional dielectric layers protrude from the rear-facing face of the transparent dielectric layer, extend in the column direction and are regularly arranged in the row direction. An address electrode initiating a discharge in conjunction with the sustain electrode is formed on each of the first additional dielectric layers.
Abstract:
A plasma display panel comprises: first and second substrates facing each other; a plurality of barrier ribs partitioning a discharge space between the first and second substrates so as to define a plurality of discharge cells; address electrodes extending in parallel with each other and in a predetermined direction; first and second electrodes disposed on the second substrate in a direction intersecting the direction of the address electrodes, the first and second electrodes being separated from the address electrodes, the first and second electrodes being provided in correspondence with each of the discharge cells; and phosphor layers coated on the discharge cells. The first and second electrodes protrude in a direction from the second substrate to the first substrate, and face each other so as to provide a space therebetween.
Abstract:
A plasma display panel includes a first substrate and a second substrate provided opposing one another with a predetermined gap therebetween, a plurality of barrier ribs mounted in the gap between the first and second substrates to define a plurality of discharge cells, a plurality of phosphor layers respectively formed in the discharge cells, a plurality of display electrodes formed on the first substrate along a first direction, and a plurality of address electrodes formed between the first and second substrates along a second direction, which intersects the first direction. The address electrodes are positioned closer to the first substrate than to the second substrate.
Abstract:
A plasma display panel driving method that is adaptive for improving contrast. In the method, at least one of the first and second electrodes keeps a floating state in an initialization period of at least one sub-field of a plurality of sub-fields.