Abstract:
A process for the purification of a compound of general formula I: ##STR1## wherein R.sup.1 is hydrogen or C.sub.1 -C.sub.6 alkyl, C.sub.2 -C.sub.6 alkenyl or C.sub.2 -C.sub.6 alkynyl, any of which may optionally be substituted with one or more substituents selected from halogen and hydroxy; or COOR.sup.4, COR.sup.6, CONR.sup.4 R.sup.5 or CONHSO.sub.2 R.sup.4 ;R.sup.4 and R.sup.5 independently represent hydrogen or C.sub.1 -C.sub.4 alkyl optionally substituted with one or more halogen atoms;R.sup.6 is a halogen atom or a group R.sup.4 ;R.sup.2 is hydrogen or halo; andR.sup.3 is C.sub.1 -C.sub.4 alkyl, C.sub.2 -C.sub.4 alkenyl or C.sub.2 -C.sub.4 alkynyl, any of which may optionally be substituted with one or more halogen atoms; or halo; or, where appropriate, a salt thereof;from a mixture containing the compound of general formula I together with one or more isomers or di-nitrated analogs thereof; the process comprising dissolving the mixture in a suitable crystallization solvent and recrystallizing the product from the resulting crystallization solution wherein the crystallization solution contains not more than 25% loading of the compound of general formula I, loading being defined as: ##EQU1## and wherein the temperature to which the solution is cooled for crystallization is not greater than about 30.degree. C.; wherein, after the addition of the crystallizing solvent but before recrystallization, the crystallization solution is subjected to at least one wash with an aqueous solution having an acid pH. The process is particularly useful for purifying acifluorfen produced via a route starting with m-cresol.
Abstract:
A process is disclosed for removing a light organic compound from a liquid composition comprising said light organic compound in admixture with a nitroaromatic compound, said light organic compound having a partial vapor pressure in said composition that is greater than the partial vapor pressure of said nitroaromatic compound in said composition, said process comprising contacting said composition with steam or a gas to cause at least a portion of said light organic compound to pass out of said composition and into admixture with said steam or gas.
Abstract:
The invention provides a method for the preparation of 3,4-dihydroxy-5-nitrobenzaldehyde by reacting 3-ethoxy-4-hydroxy-5-nitrobenzaldehyde with a reagent comprising zinc chloride, water and hydrogen chloride.
Abstract:
2- and 3-Nitrobenzaldehydes suitable for use as intermediates for the preparation of pharmaceuticals are obtained in a simple manner and without risk of uncontrolled decompositions by distilling mixtures of nitrobenzaldehyde isomers at bottom temperatures of at most 200.degree. C. in the presence of monomeric and/or polymeric aromatic amines and/or phenols and/or N- and S-containing phenothiazines.
Abstract:
Objectionable byproduct aqueous effluents containing contaminating amounts of hydroxynitroaromatic compounds, in particular those aqueous effluents produced during the synthesis of nitroaromatic compounds, e.g., dinitrotoluenes, via reaction of an aromatic compound with nitric acid in the presence of sulfuric acid, are efficiently, facilely and economically treated/removed by (a) intimately contacting a mixture of at least one nitroaromatic compound and at least one hydroxynitroaromatic compound with an aqueous wash medium containing a neutralizing agent, (b) separating the resulting admixture into an organic phase and an aqueous phase, (c) recycling a fraction of the separated aqueous phase to the aqueous wash medium to thus constitute a portion thereof, and (d) periodically draining a fraction of the wash medium, whether to destruction thereof or to waste.
Abstract:
Adiabatic self-evaporation cooling of a refrigerant is performed in a crystallizer for a treated organic matter which contains the refrigerant and is fed into the crystallizer. Crystals produced by the adiabatic self-evaporation cooling are withdrawn from the crystallize. An evaporated vapor is introduced from the crystallizer into an absorber so as to be contacted with a concentrated solution transformed from a generator for condensation in the absorber. A condensate is introduced from the absorber into the generator, the refrigerant is evaporated in the generator, an evaporated vapor is introduced from the generator to the condenser, the evaporated vapor is condensed in the condenser, a condensate is supplied from the condenser to the crystallizer and the concentrated solution is circulated between the absorber and the generator by returning the concentrated solution, in which the concentration of an absorbent is increased by the generator to the absorber.
Abstract:
A method of purifying acifluorfen to achieve a purity of greater than about 85% by weight involves heating to dissolution a solution of an acifluorfen crude wet cake and at least one solvent from the group of 1,2-dichlorobenzene, monochlorobenzene, o-xylene and p-xylene, with the solution having from about 10 to about 30 weight percent of acifluorfen crude wet cake. The-solution is then cooled until crystals of purified acifluorfen form. The crystals are then filtered at a temperature within the range of from about 0.degree. to about 30.degree. C. The filtered crystals are then recovered.
Abstract:
Adiabatic self-evaporation cooling of a refrigerant is performed in a crystallizer for a treated organic matter which contains the refrigerant and is fed into the crystallizer. Crystals produced by the adiabatic self-evaporation cooling are withdrawn from the crystallize. An evaporated vapor is introduced from the crystallizer into an absorber so as to be contacted with a concentrated solution transformed from a generator for condensation in the absorber. A condensate is introduced from the absorber into the generator, the refrigerant is evaporated in the generator, an evaporated vapor is introduced from the generator to the condenser, the evaporated vapor is condensed in the condenser, a condensate is supplied from the condenser to the crystallizer and the concentrated solution is circulated between the absorber and the generator by returning the concentrated solution, in which the concentration of an absorbent is increased by the generator to the absorber.
Abstract:
A process for the preparation of halonitroalkanes, e.g. bromonitromethane, is disclosed in which a nitroalkane is reacted with an alkali metal base or an alkaline earth metal base, and the resulting nitroalkane salt is halogenated to form the halonitroalkane in a reaction mixture. The process is improved by acidifying the reaction mixture, preferably to pH=0-4, and thereafter recovering the halonitroalkane by azeotropic distillation of the reaction mixture. The acidification step increases the amount of halonitroalkane recovered, as compared to prior art processes in which the reaction mixture is distilled without prior acidification.
Abstract:
Pure or substantially enriched 2,4- and 2,6-dinitrotoluene can be isolated from a mixture containing these isomers if such a mixture is distilled under a pressure of 0.5 to 20 mbar at a temperature of 80.degree. to 200.degree. C. with exclusion of reducing conditions.