Abstract:
Integrated circuit memory devices include a memory cell array having therein a plurality of stored data bits and a plurality of parity bits generated from a plurality of write data bits received by the memory device during a write operation. The plurality of stored data bits and the plurality of parity bits may collectively form a word having a length of m+p bits, where m and p are integers. An error check circuit is provided that converts the plurality of stored data bits and the plurality of parity bits into a plurality of syndrome bits (e.g., Si) that designate a location of a bit error in the plurality of stored data bits when compared against the original write data bits. An error correction circuit is provided that uses the plurality of syndrome bits to correct an error in the plurality of stored data bits and generate a plurality of read data bits that match the plurality of original write data bits.
Abstract:
A memory charging circuit includes a read charge control circuit controlled according to a read control signal and an address value. A write charge control circuit is controlled according to a write control signal and the same or a different address value. Charging to and charging from the same data IO lines is controlled using the read charge amplifier circuit and the write charge amplifier circuit. A column select line circuit can be configured into a first arrangement where a first output is activated according to a read control signal and an address and a second output is activated according to a write control signal and the same or a different address. In a second arrangement, the first output is activated according to an address and either the read control signal or the write control signal.
Abstract:
Integrated circuit memory devices include first and second memory banks, first and second local data lines electrically coupled to the first and second memory banks, respectively, and a multiplexer having first and second inputs electrically coupled to first and second data bus lines, respectively. A data selection circuit is also provided which routes data from the first and second local data lines to the first and second data bus lines, respectively, when a selection control signal is in a first logic state and routes data from the second and first local data lines to the first and second data bus lines, respectively, when a selection control signal is in a second logic state opposite the first logic state. A control signal generator is also provided. This control signal generator generates the selection control signal in the first and second logic states when a first address in a string of burst addresses is even and odd, respectively.
Abstract:
An internal clock signal generator is provided which includes a synchronized delay circuit which receives an external clock signal and outputs a clock signal which is coarsely synchronized with the external clock signal. A delay locked loop (DLL) or phase locked loop (PLL) receives the coarsely synchronized clock signal and generates an internal clock signal which is more finely synchronized with the external clock signal.
Abstract:
Integrated circuit devices include a data buffer that is responsive to a control signal, enabled to pass data received at a data input thereof to a data output thereof when the control signal is in an active logic state and disabled to block passage of data from the data input to the data output when the control signal is in an inactive logic state. A data buffer control circuit is also provided. The data buffer control circuit latches a latency signal in response to a control clock, generates the control signal from the latched latency signal and comprises a pulse generator that drives the control signal to its inactive logic state in-sync with an edge of the latency signal. This inactive control signal can be used to disable the data buffer.
Abstract:
Integrated circuit devices having synchronized signal generators therein include a first signal generator and a second signal generator. The first signal generator receives a first input signal and a complementary version of the first input signal at true and complementary inputs thereto, respectively, and generates a first output signal having a leading edge in-sync with a leading edge of the first input signal (e.g., clock signal CLK) but delayed relative thereto by a first time interval. The second signal generator receives the first input signal and the complementary version of the first input signal at complementary and true inputs thereto, respectively, and generates a second output signal having a leading edge in-sync with a leading edge of the complementary version of the first input signal but delayed relative thereto by the first time interval. First and second pulse generators are also preferably provided. The first pulse generator is responsive to the first output signal and the second pulse generator is responsive to the second output signal.
Abstract:
A column select circuit capable of minimizing load to data input/output lines, a semiconductor memory device having the same, and an arrangement method for the semiconductor memory device are described. In the semiconductor memory device having column select circuits, each column select circuit selects one of at least two banks in a memory block and selects a predetermined bit line among a plurality of bit lines in the selected bank to transfer data of the selected bit line to data input/output line. The column select circuit includes one or more first select portions for connecting the bit lines of the selected bank to the corresponding first data lines in response to a bank select signal to select a predetermined bank. One or more second select portions connects the first data lines to a second data line in response to each column select signal which represents the address of each bit line. A third select portion connects the second data line to the data input/output lines in response to the bank select signal. The second data line shared by the second select portions is connected to at least one first data line which is responsive to the column select signal.
Abstract:
Disclosed is a synchronous semiconductor device having a double data rate input circuit which allows data to be written in the device in response to a clock signal and a data strobe signal. The input circuit stores a pair of data which is synchronized with either the clock signal or the data strobe signal, thereby processing data at high speed. In case the data strobe is used, data setup and hold window margin is improved.