Abstract:
A sterile filling machine and related method are provided for sterile filling a container with a substance. The container includes a heat resealable stopper and a chamber for receiving the substance therein. The sealed, empty containers are subjected to radiation capable of penetrating through the stopper and chamber for sterilizing the container. The previously sterilized containers are then transported through an e-beam chamber, wherein an electron beam is directed onto a penetrable surface of the stopper to sterilize the penetrable surface. A needle is mounted within the e-beam chamber and moved into engagement with the stopper to pierce the sterilized penetrable surface of the stopper and inject the substance through the needle and into the chamber of the container. The needle is then withdrawn from the stopper and the filled container is transported outside of the e-beam chamber. Laser energy is then transmitted onto the penetrated surface of the stopper to fuse the stopper material and hermetically re-seal the stopper.
Abstract:
An apparatus is provided for needle filling and thermally resealing containers having stoppers that are needle penetrable for filling the containers with a substance, and are thermally resealable for thermally sealing a needle hole in the stopper upon withdrawal of a needle therefrom. A container support of the apparatus supports at least one container having a resealable stopper in a substantially fixed position during needle filling and thermally resealing a needle hole in the stopper upon withdrawal of a needle therefrom. A robotic arm of the apparatus is drivingly mounted adjacent to the container support and movable relative thereto. A manifold is drivingly mounted on the robotic arm and includes (1) a needle for penetrating the resealable stopper and introducing a substance through the needle and into the container; (2) a laser optic assembly for heating a needle penetrated region of the stopper and, in turn, sealing a needle hole in the stopper; and (3) a temperature sensor for sensing the temperate of a needle penetrated region of the stopper to determine whether a needle hole therein is sealed. The manifold is movable laterally relative to the container on the container support to position the manifold relative to a needle penetrable region of the stopper of the container.
Abstract:
A contact lens transfer device for transferring a contact lens from a storage container to a contact lens applicator has a body and a contact lens holder movably mounted on the body. The contact lens holder defines a contact lens support surface, a fluid-flow aperture extending through the contact lens support surface, and a chamber coupled in fluid communication with the fluid-flow aperture. A contact lens is removably receivable on the lens support surface, and the fluid-flow aperture is coupled in fluid communication with an interface between the contact lens and lens support surface for introducing fluid from the chamber, through the fluid-flow aperture and into the interface to release the lens from the lens support surface.
Abstract:
A dispenser for dispensing a fluid includes a rigid vial that has a main fluid chamber containing a fluid, and a pump assembly that is in fluid communication with the main fluid chamber and is configured to dispense a predetermined quantity of fluid from the main fluid chamber. A flexible bladder is provided which is located within the main fluid chamber and is configured to expand to fill the ullage created within the main fluid chamber during dispensing of fluid by the pump assembly. The resilient bladder tends to force itself outwardly toward the rigid vial and, in turn, increases the pressure within the main fluid chamber in comparison to the interior of the bladder to thereby prevent the ingress of air or vapors through the bladder or otherwise into the main fluid chamber.
Abstract:
A dispenser for dispensing a fluid includes a rigid vial that has a main fluid chamber containing a fluid, and a pump assembly that is in fluid communication with the main fluid chamber and is configured to dispense a predetermined quantity of fluid from the main fluid chamber. A flexible bladder is provided which is located within the main fluid chamber and is configured to expand to fill the ullage created within the main fluid chamber during dispensing of fluid by the pump assembly. The resilient bladder tends to force itself outwardly toward the rigid vial and, in turn, increases the pressure within the main fluid chamber in comparison to the interior of the bladder to thereby prevent the ingress of air or vapors through the bladder or otherwise into the main fluid chamber.
Abstract:
An apparatus and method are provided for applying and removing contact lenses. The apparatus has an actuator and two tissue-engaging surfaces drivingly coupled to the actuator for engaging tissue adjacent to the eye in connection with actuating the actuator and to facilitate retaining the eye open during removal of the contact lens therefrom. A support surface supports the apparatus adjacent to the eye, and a lens removing member is drivingly coupled to the actuator for movement between an extended position and a retracted position for removing the contact lens from the eye. The actuator actuates the tissue-engaging surface to facilitate retaining the eye open during removal of the contact lens therefrom, and substantially simultaneously actuates the lens removing member to remove the contact lens from the open eye.
Abstract:
The subject intradermal delivery device provides for penetration to a fixed depth without requiring special expertise by the user. The device consists of a syringe nested inside an inner shell and an outer shell. An elongated annular channel is formed between the inner shell and the outer shell. A housing receives the syringe and concentric shells in a sliding engagement. A first seal on the distal end of the housing forms a variable length channel in communication with the elongated annular channel via a port formed in the outer shell. When the device is applied to the skin, the housing and syringe are slid towards the skin, and the variable length channel generates a vacuum which forces the skin to bulge into the elongated annular channel. As a result, the skin is tensioned across the inner shell to form a substantially planar, taut target area of skin. The taut target area of skin in combination with a stop on the housing determines the insertion depth of the syringe.
Abstract:
A stopper and container body are molded in the same molding machine. An assembly device, such as a pick and place robot, transfers the stopper from one mold cavity into the opening in the container body located within another mold cavity, or vice versa, to assemble the stopper and container body. Then, the assembled container body and stopper are removed from the molding machine and transported to a needle filling and laser resealing station for filling and laser resealing. A laminar flow source directs a substantially laminar flow of air or sterile gas over the mold surfaces, stoppers and container bodies, and assembly device, to prevent contamination during assembly.