Abstract:
An internal-combustion engine includes a three-way, three-position solenoid valve, having an inlet communicating with a pressurized-fluid chamber and with a hydraulic actuator of an intake valve, and two outlets communicating with an actuator of another intake valve of a cylinder and the exhaust channel. The solenoid valve has a first position, in which the inlet communicates with both outlets, a second position, in which the inlet communicates only with the outlet connected to the actuator of the intake valve and a third position, in which the inlet does not communicate with any of the two outlets. During at least part of an active stroke of a tappet, the solenoid valve is kept in the third position to render the first intake valve active. During the active stroke of the tappet, the solenoid valve is never brought into the second position so that the second intake valve always remains closed.
Abstract:
An automotive accelerator device includes an accelerator member movable in response to driver operation, a position sensor associated with the accelerator member to output a position signal indicating an operation degree of the accelerator member, and signal processing means configured to receive the position signal generated by the position sensor and to generate a command for a motor vehicle engine based on the position signal and a characteristic curve of the accelerator device that defines the command for the motor vehicle engine as a function of the position signal; the signal processing means are further configured to: receive signals indicating a current motor vehicle speed and a target motor vehicle speed, and to dynamically adapt the accelerator device characteristic curve based on the current motor vehicle speed with respect to the target motor vehicle speed.
Abstract:
An internal-combustion engine includes a system for variable actuation of intake valves, including a control valve for each cylinder, which controls communication of a pressurized-fluid chamber with a discharge channel. The control valve has at least three different positions, namely, a first completely open position, a second partially open position, and a third completely closed position. Electronic control means are programmed for keeping the control valve in its closed position in operating stages in which the intake valve must remain coupled to the respective cam and for bringing the control valve from its completely closed position to its partially open position or to its completely open position in operating stages in which the intake valve must be uncoupled from the respective cam, selection between the first position and said second position of the control valve being made as a function of one or more operating parameters of the engine.
Abstract:
A supercharged internal combustion engine includes a motor unit having a head and an exhaust manifold. A turbocharger assembly is fluid dynamically connected to the exhaust manifold, wherein the turbocharger assembly includes a turbine, a central body and a compressor. The turbocharger assembly includes a lubrication channel for the passage of a lubricating fluid hydraulically connected to a lubrication circuit of the motor unit of said internal combustion engine. The turbine includes a jacket, provided at least in part in a body thereof, arranged for the passage of a cooling fluid and in hydraulic communication with an inlet channel and an outlet channel hydraulically connected to a cooling circuit of the motor unit of said internal combustion engine. The inlet channel, outlet channel and lubrication channel are integrated in said turbocharger assembly in correspondence of a connection interface between said turbocharger assembly and the motor unit.
Abstract:
In a motor-vehicle seat a padding body of a cushion and/or backrest has a passage for air coming from an air conditioning system of the motor-vehicle. This passage includes a closed cavity defined between a lowered surface formed in an outer surface of the padding body and the seat cover. At least part of the closed cavity is separated from the cover through a layer of a material substantially impervious to air, configured to exchange heat by thermal conduction, through the cover with a body of an occupant.
Abstract:
A motor vehicle cup holder with a support made of a rigid material and having a receptacle, which extends along a vertical axis and is radially delimited by a side surface, having at least one retaining seat. The cup holder has a lining device, separate from the support and having a liner, which lines at least part of the side surface and defines a seat for housing a container. The lining device has an elastically deformable inner protuberance to grip the container and an outer protuberance to engage the retaining seat of the support and is elastically deformable to enable disengagement of this outer protuberance.
Abstract:
A method for forming a sheet made of an aluminium alloy into a component of complex shape, particularly a motor-vehicle component, such as an outer panel or an inner frame of a bonnet or a door of a motor-vehicle, provides for blow-forming of the sheet, with the aid of pressurized gas, within a mould. The alloy constituting the sheet does not have superplasticity features and the sheet and/or the mould are heated to a temperature in the order of 400°-450° C. for 5XXX series alloys and 450°-500° C. and over for 6XXX and 7XXX series alloys. The maximum pressure reached by the forming gas is in the order of 20-30 bars and the time required for forming the sheet is between 40 and 150 seconds and therefore is consistent with production rates in the automotive field.
Abstract:
A driving style evaluation system (1) for a motor vehicle (2), configured to receive and process motor vehicle-related data and motor vehicle mission-related data to compute a Driving Style Evaluation Index (DSEI) indicative of the driving style of a motor vehicle driver during a motor vehicle mission in relation to a motor vehicle fuel consumption, based on the following summary index: Fuel Economy Index (FEI), which is indicative of the driving style of the motor vehicle driver from the fuel saving perspective, and is computed based on pre-summary indices computed based on respective partial indices in turn computed based on a combination of the following physical quantities which affect the motor vehicle fuel consumption: time interval, ending with a motor vehicle stop, during which the motor vehicle speed reduction is mainly due to a combination of a gas pedal release and a gear downshift, possibly with operation of at least one motor vehicle braking system only during the final part of the maneuver; engine speed and torque fluctuations within preset time intervals; time elapsed between a gas pedal release and operation of at least one motor vehicle braking system; time during which at least one motor vehicle braking system is operated; amount of energy dissipated by at least one motor vehicle braking system; engine power and instantaneous fuel consumption in different gears; and time interval between two consecutive gear shifts; and wherein the pre-summary and partial indices are weighted by means of respective dynamic weighting coefficients, each of which is computed based on a respective motor vehicle mission-independent weight, which is indicative of the influence that the physical quantities based on the which the Fuel Economy Index (FEI) is computed have on the overall fuel consumption reduction, and based on a respective motor vehicle mission-dependent benefit, which represents an evaluation of the benefit that the Fuel Economy Index (FEI) provides in the driving style evaluation during the motor vehicle mission.
Abstract:
A method for locating a tool for industrial operations that is positioned in a sequence of operating points of an operating sequence associated to different positions on a component on which work is to be carried out, includes associating a light source to the tool and at least three light sources identifying a position reference triplet fixed with respect to the component. A stereovision apparatus having at least two video cameras acquires at least two respective images of the tool and component. The displacement of the operating points on the component is tracked when carrying out an industrial operation on the component by recognizing positions of the reference triplet and a point of the light source of the tool calculating the position of the operating points of an operating sequence with reference to the position assumed by the reference triplet and evaluating the position of the tool with respect to the calculated position of the operating points.
Abstract:
An electrically actuated control valve has three mouths and three operating positions, in which the three mouths includes a first mouth for inlet of a working fluid, and a second mouth and a third mouth for outlet of the working fluid. The three operating positions include a first operating position in which a passage of fluid from the first mouth to the second mouth and the third mouth is enabled, a second operating position in which a passage of fluid from the first mouth to only one of said second and third mouths is enabled, and a third operating position in which the passage of fluid from the first to the second mouth and the third mouth is disabled. The control valve includes an electric or electromagnetic actuator for controlling the passage of fluid from the first mouth to the second and third mouths providing the aforesaid three operating positions.