APPARATUS AND METHOD FOR IMPLANTING AN IMPLANTABLE DEVICE

    公开(公告)号:US20210260390A1

    公开(公告)日:2021-08-26

    申请号:US17317447

    申请日:2021-05-11

    Abstract: In various examples, an apparatus is configured for subcutaneously inserting an implantable device within a patient. The apparatus includes a dilator portion including a dilator including a dilator length. The dilator portion is configured to separate tissue to create a subcutaneous pocket within the patient sized and shaped to accommodate an implantable device within the subcutaneous pocket. A sheath portion includes a sheath sized and shaped to accommodate the dilator within a sheath lumen. The sheath is configured to accommodate an antenna of the implantable device with the dilator removed from within the sheath. The sheath includes a sheath length that is at least substantially as long as an antenna length. The sheath is configured to separate to allow removal of the sheath around the implantable device to remove the sheath from and leave the implantable device within the subcutaneous pocket within the patient.

    METHOD OF ESTABLISHING A COMMUNICATION SESSION BETWEEN AN EXTERNAL DEVICE AND AN IMPLANTABLE MEDICAL DEVICE

    公开(公告)号:US20210085988A1

    公开(公告)日:2021-03-25

    申请号:US17025573

    申请日:2020-09-18

    Abstract: In various examples, a method of establishing a communication session between an external device and an implantable medical device is described. The method includes generating at the external device a first private key and a first public key. A start session order is sent over a long-range communication channel. Evidence of physical proximity is sent from the external device to the implantable medical device over a short-range communication channel. A second private key and a second public key are generated at the implantable medical device. A first shared key is generated by the implantable medical device using the first public key and the second private key. A second shared key is generated by the external device using the second public key and the first private key. The first and second shared keys are used to encrypt and decrypt one or more messages between the external device and the implantable medical device.

    RF Switch And An EMI Filter Capacitor For An AIMD Connected In Series Between A Feedthrough Active Conductor And System Ground

    公开(公告)号:US20210038902A1

    公开(公告)日:2021-02-11

    申请号:US17077337

    申请日:2020-10-22

    Abstract: An enhanced RF switchable filtered feedthrough for real-time identification of the electrical and physical integrity of an implanted AIMD lead includes a DOUBLE POLE RF switch disposed on the device side. Additionally, the RF switchable filtered feedthrough can optionally include transient voltage suppressors (TVS) and an MRI mode. In an embodiment, a DOUBLE POLE RF switch selectively disconnects EMI filter capacitors so that an RF test/interrogation signal is sent from the AIMD down into an implanted lead(s). The reflected RF signal is then analyzed to assess implanted lead integrity including lead body anomalies, lead insulation defects, and/or lead conductor defects. The Double Pole switch is configured to be controlled by an AIMD control signal to switch between FIRST and SECOND THROW positions. In the FIRST THROW position a conductive leadwire hermetically sealed to and disposed through an insulator is electrically connected to a filter capacitor, which is then electrically connected to the ferrule of a hermetic feedthrough of an AIMD. In the FIRST THROW position, EMI energy imparted to a body fluid side implanted lead can be diverted to the housing of the AIMD. In the SECOND THROW position the conductive leadwire is electrically connected to an RF source disposed on the device side of the housing of the AIMD. While in the SECOND THROW position, a reflective return signal from the RF source is measured and analyzed to determine if the implanted AIMD lead exhibits any life-threatening performance issues, such as lead body anomalies, lead insulation defects or changes, or even defective, fractured or dislodged lead conductors. In another embodiment, a SINGLE POLE RF switch is configured to disconnect filter capacitors during the delivery of a high-voltage cardioversion shock from an implantable cardioverter defibrillator. Dis-connection of the filter capacitor either reduces or eliminates filter capacitor pulse inrush currents, which allows for the use of standard low-voltage filter capacitors instead of larger and more expensive high-voltage pulse rated filter capacitors. Dis-connection of the filter capacitor also allows for an RF interrogation pulse to be applied to the implanted lead in real-time (for example, pre-set intervals throughout the day).

    Steerable medical device and method
    207.
    发明授权

    公开(公告)号:US10709870B2

    公开(公告)日:2020-07-14

    申请号:US15917953

    申请日:2018-03-12

    Abstract: In various examples, a system includes a steerable medical device including a handle including a longitudinal axis. An elongate shaft extends distally from the handle. The elongate shaft includes a distal tip and a lumen through the elongate shaft. At least four pullwires are disposed within the handle and extending to and anchored proximate the distal tip of the elongate shaft. At least two actuators are associated with the handle. The at least two actuators are operably coupled to the at least four pullwires with actuation of the first actuator causing tension in the first or second pullwire to deflect the distal tip in a first or second tip direction, respectively, and actuation of the second actuator causing tension in the third or fourth pullwire to deflect the distal tip in a third or fourth tip direction, respectively.

    Low equivalent series resistance RF filter for an active implantable medical device

    公开(公告)号:US10596369B2

    公开(公告)日:2020-03-24

    申请号:US16121716

    申请日:2018-09-05

    Abstract: A hermetically sealed filtered feedthrough assembly includes an electrically conductive ferrule sealed by a first gold braze to an insulator disposed at least partially within a ferrule opening. A conductive wire is disposed within a via hole disposed through the insulator extending from a body fluid side to a device side. A second gold braze hermetically seals the conductive leadwire to the via hole. A capacitor is disposed on the device side having a capacitor dielectric body with a dielectric constant k that is greater than 0 and less than 1000. The capacitor is the first filter capacitor electrically connected to the conductive leadwire coming from the body fluid side into the device side. An active electrical connection electrically connects the conductive leadwire to the capacitor active metallization. A ground electrical connection electrically connects the capacitor ground metallization to the ferrule and housing of the active implantable medical device.

Patent Agency Ranking