-
1.
公开(公告)号:US20190214605A1
公开(公告)日:2019-07-11
申请号:US16240173
申请日:2019-01-04
Applicant: Greatbatch Ltd.
Inventor: Keith W. Seitz , Robert S. Rubino , Gary Freitag , David Dianetti , Todd C. Sutay , Ho-Chul Yun , Thomas Marzano , Brian P. Hohl
IPC: H01M2/02 , H01M2/04 , H01M4/131 , H01M10/0525
CPC classification number: H01M2/021 , H01M2/026 , H01M2/0277 , H01M2/0426 , H01M2/065
Abstract: A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are metal feedthroughs, such as of gold, and are formed by brazing gold into openings machined into one or both ceramic casing halves. The two ceramic casing halves are separated from each other by a metal interlayer, such as of gold, bonded to a thin film metallization adhesion layer, such as of titanium, that contacts an edge periphery of each ceramic casing half. A solid electrolyte (LixPOyNz) is used to activate the electrode assembly.
-
公开(公告)号:US20240383816A1
公开(公告)日:2024-11-21
申请号:US18784110
申请日:2024-07-25
Applicant: Greatbatch Ltd.
Inventor: Christine A. Frysz , Dallas J. Rensel , Brian P. Hohl , Jonathan Calamel , Xiaohong (Shawn) Tang
Abstract: A ceramic reinforced metal composite (CRMC) comprising a composition composite as an interpenetrating network of at least two interconnected composites is described. The interpenetrating networks comprise a ceramic matrix composite (CMC) and a metal matrix composite (MMC). The composition composite is particularly useful as an electrically conductive pathway extending through the insulator or ceramic body of a hermetically sealed component, for example, a feedthrough in an active implantable medical device (AIMD).
-
3.
公开(公告)号:US12094626B2
公开(公告)日:2024-09-17
申请号:US18117042
申请日:2023-03-03
Applicant: Greatbatch Ltd.
Inventor: Brian P. Hohl , Dallas J. Rensel , Jonathan Calamel , Christine A. Frysz
IPC: B33Y10/00 , B28B1/00 , B33Y40/20 , B33Y80/00 , C04B35/626 , C04B35/64 , G06F30/10 , H01B17/30 , H01B17/58 , H01B19/00 , G06F113/10
CPC classification number: H01B17/301 , B28B1/001 , B33Y10/00 , B33Y40/20 , B33Y80/00 , C04B35/6269 , C04B35/64 , G06F30/10 , H01B17/58 , H01B19/00 , C04B2235/6026 , G06F2113/10
Abstract: A method for manufacturing a ceramic substrate by a 3D-printing process is described. The method comprises operating a 3D-printer to print a green-state ceramic body having a height extending to spaced apart first and second end surfaces and at least one via extending at least part-way along the height of the green-state ceramic body from the first end surface toward the second end surface. Then, the green-state ceramic body is sintered to provide the ceramic substrate with the at least one via. In cross-section, the at least one via has a square-shaped via with rounded corners.
-
公开(公告)号:US11011787B2
公开(公告)日:2021-05-18
申请号:US16240173
申请日:2019-01-04
Applicant: Greatbatch Ltd.
Inventor: Keith W. Seitz , Robert S. Rubino , Gary Freitag , David Dianetti , Todd C. Sutay , Ho-Chul Yun , Thomas Marzano , Brian P. Hohl
IPC: H01M50/10 , H01M50/116 , H01M50/147 , H01M50/155 , H01M50/169 , H01M50/186 , H01M50/191 , H01M50/543 , H01M4/131 , H01M10/0525
Abstract: A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are metal feedthroughs, such as of gold, and are formed by brazing gold into openings machined into one or both ceramic casing halves. The two ceramic casing halves are separated from each other by a metal interlayer, such as of gold, bonded to a thin film metallization adhesion layer, such as of titanium, that contacts an edge periphery of each ceramic casing half. A solid electrolyte (LixPOyNz) is used to activate the electrode assembly.
-
5.
公开(公告)号:US10559409B2
公开(公告)日:2020-02-11
申请号:US16362862
申请日:2019-03-25
Applicant: Greatbatch Ltd.
Inventor: Keith W. Seitz , Dallas J. Rensel , Brian P. Hohl , Jonathan Calamel , Xiaohong Tang , Robert A. Stevenson , Christine A. Frysz , Thomas Marzano , Jason Woods , Richard L. Brendel
IPC: A61N1/375 , B23K1/19 , C04B41/51 , H01B17/30 , C04B41/45 , C04B41/88 , H01B19/02 , B23K1/00 , C04B41/00 , B23K1/008 , B23K26/32 , B23K26/21 , B22F7/04 , B23K101/36 , B23K103/14 , B22F7/08
Abstract: A method for manufacturing a feedthrough dielectric body for an active implantable medical device includes the steps of first forming a ceramic reinforced metal composite (CRMC) paste by mixing platinum with a ceramic material to form a CRMC material, subjecting the CRMC material to a first sintering step to thereby form a sintered CRMC material, ball-milling or grinding the sintered CRMC material to form a powdered CRMC material; and then mixing the powdered CRMC material with a solvent to form the CRMC paste. The method further includes forming an alumina ceramic body in a green state, forming at least one via hole through the alumina ceramic body, filling the via hole with the CRMC paste, drying the ceramic body including the CRMC paste to form a first CRMC material filling the via hole, forming a second via hole through the first CRMC material, providing a metal core in the second via hole, and subjecting the ceramic body including the first CRMC material and the metal core to a second sintering step to thereby form the dielectric body. The dielectric body is then sealed in a ferrule opening to form a feedthrough.
-
公开(公告)号:US20240390688A1
公开(公告)日:2024-11-28
申请号:US18796784
申请日:2024-08-07
Applicant: Greatbatch Ltd.
Inventor: Robert A. Stevenson , Christine A. Frysz , Keith W. Seitz , Brian P. Hohl , Marc Gregory Martino
Abstract: An AIMD includes a ceramic base closed with a ceramic lid, both cooperatively separating body fluid and device sides. The lid and circuit board both have active and conductive pathways. A circuit board has active and ground conductive pathways. An anisotropic conductive layer disposed between the lid device side and the circuit board has a first thickness where a first conductive particle is in electrical contact with the lid and the circuit board active conductive pathways electrically connected to the active terminal of an electronic component on the circuit board, a second thickness where a second conductive particle is in electrical contact with the lid and the circuit board ground conductive pathways electrically connected to the ground terminal of the electronic component. The anisotropic conductive layer has a third, greater thickness where no conductive particles are in electrical contact with the lid and circuit board conductive active and ground pathways.
-
公开(公告)号:US20230085958A1
公开(公告)日:2023-03-23
申请号:US17942229
申请日:2022-09-12
Applicant: Greatbatch Ltd.
Inventor: Christine A. Frysz , Dallas J. Rensel , Brian P. Hohl , Jonathan Calarnel , Xiaohong Tang
Abstract: A ceramic reinforced metal composite (CRMC) comprising a composition composite as an interpenetrating network of at least two interconnected composites is described. The interpenetrating networks comprise a ceramic matrix composite (CMC) and a metal matrix composite (MMC). The composition composite is particularly useful as an electrically conductive pathway extending through the ceramic body of a hermetically sealed component, for example, a feedthrough in an active implantable medical device (AIMD).
-
公开(公告)号:US11075421B1
公开(公告)日:2021-07-27
申请号:US16422103
申请日:2019-05-24
Applicant: Greatbatch Ltd.
Inventor: Robert S. Rubino , Keith W. Seitz , Brian P. Hohl
IPC: H01M50/116 , H01M50/183 , H01M50/557
Abstract: A miniature electrochemical cell having a volume of less than 0.5 cc is described. The cell casing has a ceramic substrate, preferably of alumina, that is part of a metal-containing feedthrough formed by co-firing a metallic paste in a via hole extending through a green state ceramic. The sintered feedthrough serves as a header assembly that is then joined to an open-ended container by a gold-braze to thereby provide the cell casing. The metallic container serves as a terminal for one of the electrodes, for example the anode, while the metal fill material resulting from sintering the metallic paste serves as the opposite polarity terminal, for example the positive terminal for the cathode.
-
9.
公开(公告)号:US20200185662A1
公开(公告)日:2020-06-11
申请号:US16788679
申请日:2020-02-12
Applicant: Greatbatch Ltd.
Inventor: Robert S. Rubino , Keith W. Seitz , Xiaohong Tang , Todd C. Sutay , Brian P. Hohl , Holly Noelle Moschiano , Biswa P. Das , Afsar Ali , Sourabh Biswas , Gary Freitag , David Dianetti , Ho-Chul Yun , Thomas Marzano
IPC: H01M2/02 , H01M2/04 , H01M2/06 , H01M10/0525 , H01M4/131
Abstract: A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are metal feedthroughs, such as of gold, and are formed by brazing gold into openings machined into one or both of ceramic casing halves. A thin film metallization, such as of titanium, contacts an edge periphery of each ceramic casing half. The first ceramic casing half is moved into registry with the second ceramic casing half so that the first and second ring-shaped metallizations contact each other. Then, a laser welds through one of the casing halves being a substantially transparent ceramic, for example sapphire, to braze the first and second ring-shaped metallizations to each other to thereby join the first and second casing halves together to form a casing housing the electrode assembly. A solid electrolyte (LixPOyNz) activates the electrode assembly.
-
公开(公告)号:US20200030613A1
公开(公告)日:2020-01-30
申请号:US16578476
申请日:2019-09-23
Applicant: Greatbatch Ltd.
Inventor: Robert A. Stevenson , Thomas Marzano , Keith W. Seitz , Christine A. Frysz , Dallas J. Rensel , Brian P. Hohl
IPC: A61N1/375 , A61N1/05 , B23K35/30 , A61N1/08 , H01R43/00 , H01G4/35 , C22C29/12 , H01G4/12 , H01G2/10 , H01G4/005 , H02G3/22 , H01G4/30 , C04B37/02 , C04B35/645 , B32B18/00
Abstract: A method for manufacturing a singulated feedthrough insulator for a hermetic seal of an active implantable medical device (AIMD) is described. The method begins with forming a green-state ceramic bar with a via hole filled with a conductive paste. The green-state ceramic bar is dried to convert the paste to an electrically conductive material filling via hole and then subjected to a pressing step. Following pressing, a green-state insulator is singulated from the green-state ceramic bar. The singulated green-state insulator in next sintered to form an insulator that is sized and shaped for hermetically sealing to close a ferrule opening. The thusly produced feedthrough is suitable installation in an opening in the housing of an active implantable medical device.
-
-
-
-
-
-
-
-
-