Abstract:
In an automatic drive control system in a road environment in which an infrastructure has been constructed so as to automatically steer a vehicle, the automatic steering of the vehicle is performed irrespective of lane markers attached on the road surface. A running command and a running course are determined on the basis of an obstacle detection signal, a vehicle position signal, road data, and traffic information signal for automatic driving. A target running locus is obtained on the basis of the set running course. The vehicle is automatically steered so as to trace and run along the obtained running target locus.
Abstract:
An automatic lane following system for a vehicle is adapted to control the direction of a moving vehicle along a predetermined path. An associated controller estimates the vehicle's lateral position in relation to the lane markings (usually the white painted lines). An optical sub-system or a video camera or equivalent sensor is mounted on a vehicle and used to detect the lane markings. An actuator coupled to the steering mechanism is used to control the steering position of the front road wheels in response to a steering signal from a controller. An interruption switch is closed to enable the steering system actuator. An interruption switch actuator is displaceable between a rest or stored position in which the interruption switch is open and an operable position in which the interruption switch is closed.
Abstract:
A vehicle steering system includes a first steering mechanism for a manual steering mode and a second steering mechanism for an automatic steering mode. A controller steers the vehicle in accordance with information on driving environment, with the second steering mechanism when the automatic mode is selected with a mode selector. There is further provided a holding device for holding the steering angle of the first steering mechanism when the automatic steering operation of the second steering mechanism is under way. In response to selection of the automatic mode, the controller performs the automatic steering control only when a sensor senses a straightforward neutral position of the first steering mechanism.
Abstract:
GPS satellite (4) ranging signals (6) received (32) on comm1, and DGPS auxiliary range correction signals and pseudolite carrier phase ambiguity resolution signals (8) from a fixed known earth base station (10) received (34) on comm2, at one of a plurality of vehicles/aircraft/automobiles (2) are computer processed (36) to continuously determine the one's kinematic tracking position on a pathway (14) with centimeter accuracy. That GPS-based position is communicated with selected other status information to each other one of the plurality of vehicles (2), to the one station (10), and/or to one of a plurality of control centers (16), and the one vehicle receives therefrom each of the others' status information and kinematic tracking position. Objects (22) are detected from all directions (300) by multiple supplemental mechanisms, e.g., video (54), radar/lidar (56), laser and optical scanners. Data and information are computer processed and analyzed (50,52,200,452) in neural networks (132, FIGS. 6-8) in the one vehicle to identify, rank, and evaluate collision hazards/objects, an expert operating response to which is determined in a fuzzy logic associative memory (484) which generates control signals which actuate a plurality of control systems of the one vehicle in a coordinated manner to maneuver it laterally and longitudinally to avoid each collision hazard, or, for motor vehicles, when a collision is unavoidable, to minimize injury or damage therefrom. The operator is warned by a heads up display and other modes and may override. An automotive auto-pilot mode is provided.
Abstract:
An apparatus for automated vehicle lane-keeping in which a laser sensor is used to detect three points on a retroreflective paint stripe, and the three points are used to estimate the position of the lane centerline relative to the vehicle, as well as the geometry of the roadway. The position of the lane centerline and the curvature of the roadway are then used to determine a lateral error signal for feedback control, and the roadway curvature for feedforward control, both of which are combined to produce a steering control signal for the vehicle.
Abstract:
A traveling device for calculating the relative displacement of a vehicle in a road using a magnetic sensor and a CCD camera and performing automatic steering. The vehicle is equipped with a magnetic sensor and a CCD camera. A magnetic ECU processes a signal from the magnetic sensor, an image ECU processes a signal from the CCD camera and the resulting relative displacements are both output to a vehicle control computer. When a relative displacement output from the image ECU is not irregular, the vehicle control computer performs steering control after calculating an amount of corrective steering using this relative displacement and, when it is irregular, the vehicle control computer performs steering control after calculating an amount of corrective steering using the relative displacement output from the image ECU.
Abstract:
The alertness of the vehicle operator is determined from an operating condition of the vehicle such as the steering torque, the rack thrust, and/or the yaw rate, and the determined level of alertness of the vehicle operator is advantageously reflected in the control property of the steering control system. If the alertness of the vehicle operator is significantly low, and the vehicle operator may even have dozed off, the steering control system then maximizes its intervention in the steering control so that the vehicle is automatically forced to travel along the proper path of travel. If desired, the vehicle operator may be warned by applying a vibratory torque to the steering wheel. Conversely, when the alertness of the vehicle operator is high, the intervention of the control system in the steering control is minimized so that the intentional steering effort by the vehicle operator would not be resisted or opposed by the steering control system even when an extreme steering operation is carried out.