Abstract:
A deflection control apparatus is configured to perform a deflection control in which a subject vehicle is deflected by a braking force difference between left and right wheels. The deflection control apparatus is provided with a releaser configured to release the deflection control if a steering operation, which is an operation of deflecting the subject vehicle in a direction opposite to a direction in which the subject vehicle is deflected by the deflection control, is detected during the deflection control. When releasing the deflection control, the releaser is configured to reduce a controlled variable over a predetermined time, which is shorter than a fall time of the controlled variable when the deflection control is ended without being released, and which becomes longer, as the controlled variable increases when the steering operation is detected.
Abstract:
Systems and methods are provided for determining a road profile along a predicted path. In one implementation, a system includes at least one image capture device configured to acquire a plurality of images of an area in a vicinity of a user vehicle; a data interface; and at least one processing device configured to receive the plurality of images captured by the image capture device through the data interface; and compute a profile of a road along one or more predicted paths of the user vehicle. At least one of the one or more predicted paths is predicted based on image data.
Abstract:
A method for influencing the direction of travel of a vehicle. In order to lower the risk of accidents in driving situations in which the driver reacts incorrectly, for example because of being surprised, it is provided that the driving operation be monitored in reference to the occurrence of an event due to which the travel direction of the vehicle changes, deviating from the travel direction specified at the steering wheel, and when such an event is detected that an automatic intervention in the driving operation be performed whereby the vehicle is moved back approximately into the original direction of travel in which it was moving before the event occurred.
Abstract:
A method for changing a vehicle's trajectory, wherein the vehicle includes a steering arrangement including a manual steering device, at least one pair of ground engaging members and a mechanical interconnection therebetween, includes the steps of applying a braking force to at least one of the ground engaging members so that the vehicle's trajectory is changed, and simultaneously suppressing steering device disturbances resulting from the mechanical interconnection.
Abstract:
An apparatus and method are described for lateral control of a host vehicle (F) during travel in a vehicle platoon. The apparatus and method include acquiring a control signal u and a lateral error ε relative to a target vehicle (L) of a preceding vehicle (T) travelling in the vehicle platoon, filtering the received lateral error ε, filtering the received control signal u, and executing a control algorithm for actuating lateral control of the host vehicle (F).
Abstract:
A deviation controller to prevent deviation of a vehicle from a lane of travel includes a displacement estimator configured to estimate a future lateral displacement of the vehicle with respect to the lane of travel, a detecting device configured to detect a tendency of the vehicle to deviate from the lane of travel, a prevention controller configured to apply a yaw moment to correct a travel path of the vehicle when the tendency of the vehicle to deviate from the lane of travel is detected, a correction canceling device configured to cancel the yaw moment of the prevention controller when a steering angle exceeds a canceling threshold, and a threshold adjusting device configured to adjust the canceling threshold in response to the estimated future lateral displacement.
Abstract:
In a method and apparatus for assisting the driver of a vehicle in maintaining a traffic lane limited by traffic lane markings, the traffic lane markings and the position of the vehicle in the traffic lane are detected. Upon an actual or impending change of traffic lanes a lane change warning is output to the driver of the vehicle in a first step, and a course correcting actuating intervention counteracting the lane change is carried out in a second step. The actuating intervention is carried out only if the change of traffic lanes is impermissible due to the type of traffic lane marking to be crossed during the traffic lane change, or if the lane change is not possible without danger due to collision-endangering objects present on the side of the traffic lane.
Abstract:
A method for controlling vehicle dynamics includes acquiring steering torque data indicative of forces acting on at least one tire of a vehicle and acquiring image data by capturing images of an area outside the vehicle. The friction coefficient between a tire of the vehicle and a road surface is determined as a function of vehicle data including at least the steering torque data. The lateral velocity of the vehicle is determined as a function of vehicle data including the steering torque data and/or the image data. A vehicle dynamics control is performed as a function of the lateral velocity and the friction coefficient.
Abstract:
A lane departure avoidance system is provided with a rumble strip sensing device and a lateral lane departure rate determining component. The rumble strip sensing device is configured to detect an input from a rumble strip to a vehicle wheel that is indicative of a rumble strip engagement amount. The lateral lane departure rate determining component is configured to determine a lateral rate of lane departure of a vehicle based on a detection result of the rumble strip sensing device.
Abstract:
In a vehicle dynamics control apparatus capable of balancing a vehicle dynamics stability control system and a lane deviation prevention control system, a cooperative control section is provided to make a cooperative control between lane deviation prevention control (LDP) and vehicle dynamics stability control (VDC). When a direction of yawing motion created by LDP control is opposite to a direction of yawing motion created by VDC control, the cooperative control section puts a higher priority on VDC control rather than LDP control. Conversely when the direction of yawing motion created by LDP control is identical to the direction of yawing motion created by VDC control, a higher one of the LDP desired yaw moment and the VDC desired yaw moment is selected as a final desired yaw moment, to prevent over-control, while keeping the effects obtained by both of VDC control and LDP control.