Abstract:
A nickel-metal hydride storage battery includes a negative electrode containing a hydrogen storage alloy and an electrolyte solution. The hydrogen storage alloy has a CaCu5-type crystal structure and contains at least a Ni element and a rare earth element. The rare earth element is partly substituted with an Y element, and the electrolyte solution contains NaOH in an amount of 2.0 M or more.
Abstract:
Provided are an electrode assembly including a sheet-shaped current collector that has, on at least one face thereof, a mixture agent layer containing an active material and is spirally wound, in which the current collector has, in a portion on a side of at least one end of a winding axis, a non-mixture agent layer part having no mixture agent layer formed therein, and a mass per unit area of the mixture agent layer is larger in an edge portion on the side of the non-mixture agent layer part by 0.3% or more and 1.0% or less than in a portion other than the edge portion; and an electric storage device including the electrode assembly.
Abstract:
An electric storage device according to the present invention is provided with a flat electrode assembly in which a positive electrode plate and a negative electrode plate are wound while being isolated from each other, and which includes a pair of folded-back portions opposed to each other with a center line therebetween and a flat portion positioned between the pair of folded-back portions; and a case for housing the electrode assembly, the case including, on an inner surface thereof, a raised portion having direct or indirect contact externally with a boundary region between one of the pair of folded-back portions and the flat portion of the electrode assembly, wherein a maximum external length of the folded-back portion in a direction orthogonal to the flat portion is greater than an external length of the boundary region in a direction orthogonal to the flat portion at a position thereof with which the raised portion has contact.
Abstract:
Provided is an energy storage device which employs the use of a separator provided with a layer having poor thermal properties such as a heat resistant coated layer and is capable of inhibiting a decrease in performance. The energy storage device includes: a wound body including a positive electrode, a negative electrode, and separators which are layered and wound, the separators being interposed between the positive electrode and the negative electrode and having a first surface and a second surface, the first surface having thermal bonding properties superior to thermal bonding properties of the second surface; and an insulation sheet wound around an outermost layer of the wound body. At least one of the separators is bonded to the insulation sheet via the first surface thereof.
Abstract:
An energy storage device includes: a core; and a wound body including, layered and wound around the core: a positive electrode, a negative electrode, and two separators, one of which is interposed between the positive electrode and the negative electrode and each having a first surface and a second surface. The first surface has thermal bonding properties superior to thermal bonding properties of the second surface, and at least one of the two separators is bonded to the core via the first surface thereof.
Abstract:
An energy storage element comprising: a container; an electrode assembly housed in the container; an electrode terminal provided in the container; and a current collector which electrically connects the electrode terminal and the electrode assembly, wherein the current collector is positioned inside the container, and includes: a base part connected to the electrode terminal; and arm parts which have a plate shape, extend from the base part, and are connected to the electrode assembly in a state that the plate-shaped arm parts sandwitch the electrode assembly, and paired arm parts which are outermost two of the arm parts are apart from each other with a spacing larger than a width of the base part in a direction in which the paired arm parts are arranged.
Abstract:
A power supply device includes: a power storage element having an electrode terminal; and a fixing portion fixed to the power storage element on a second surface of the power storage element which is different from a first surface on which the electrode terminal is arranged. The fixing portion has a connection terminal for electrically connecting the electrode terminal and an external load.
Abstract:
Provided is a sealing plug which seals a through-hole formed in a wall comprising a main shaft which is placeable in the through-hole. The main shaft includes: a base; and a tip connected to a leading end of the base and having a cross section having an outer edge that is smaller than or equal to an outer edge of a cross section of the leading end of the base, the cross sections each being in a plane perpendicular to an axial direction of the main shaft. The base includes: a thick portion having, in a plane perpendicular to the axial direction of the main shaft, a cross section having a largest outer edge; and a side surface portion having an outer edge which decreases in size from the thick portion towards the tip.
Abstract:
An aspect of the present invention is a sulfide solid electrolyte that contains at least one element M selected from the group consisting of Al, Si, B, Mg, Zr, Ti, Hf, Ca, Sr, Sc, Ce, Ta, Nb, W, Mo, and V, and N and has a crystalline structure. Another aspect of the present invention is a sulfide solid electrolyte that contains Al and N and that has a crystalline structure.
Abstract:
An energy storage apparatus includes an energy storage device and a management unit. The management unit: lowers an SOC of the energy storage device by discharge of the energy storage device; acquires current and voltage of the energy storage device while the SOC of the energy storage device is within a predetermined SOC range in a process of raising the SOC of the energy storage device by charge of the energy storage device; and calculates an internal resistance of the energy storage device based on the acquired current and voltage. The SOC range is a range in which a change in voltage of the energy storage device with respect to a change in SOC of the energy storage device is larger than a range in which a value of the SOC is larger than the SOC range.