Abstract:
The present invention provides for spreading a first signal using a plurality of spreading codes, multiplexing the first spread signal by code division multiplexing, transmitting the first multiplexed signal via a plurality of neighboring frequency resources of an OFDM symbol of a first antenna set, spreading a second signal using a plurality of spreading codes, multiplexing the second spread signal by code division multiplexing, transmitting the second multiplexed signal via a plurality of neighboring frequency resources of the OFDM symbol of the first antenna set, transmitting the first multiplexed signal via a plurality of neighboring frequency resources of an OFDM symbol of a second antenna set, and transmitting the second multiplexed signal via a plurality of neighboring frequency resources of the OFDM symbol of the second antenna set, wherein the first multiplexed signal is transmitted on frequency resources that neighbor frequency resources that the second multiplexed signal is transmitted on.
Abstract:
A method for adjusting a granularity of resource allocation in a wireless mobile communication system supporting a compact scheduling is discussed. A resource indication value (RIV) corresponds to a start index (S) of one set of consecutive virtual resource blocks (VRBs) and a length of the VRBs. The start index (S) is selected from among ‘s’ values (where s−P+mT
Abstract:
The present invention provides for transmitting a spread signal in a mobile communication system. The present invention includes spreading a signal using a plurality of spreading codes, wherein the plurality of spreading codes have a spreading factor, multiplexing the spread signal by code division multiplexing, transmitting the multiplexed signal via a plurality of neighboring frequency resources of one OFDM symbol of a first antenna set, and transmitting the same multiplexed signal via a plurality of neighboring frequency resources of one OFDM symbol of a second antenna set.
Abstract:
A method and device for allocating resources in a multiple frequency band system are disclosed. In a method for detecting a resource indication value (RIV) indicating not only a start index (S) of consecutive virtual resource blocks (VRBs) allocated to a first UE capable of simultaneously receiving information from a plurality of frequency bands, but also a length (L) of the consecutive VRBs, in a wireless mobile communication system capable of using the plurality of frequency bands, the method includes receiving, by the first UE, the RIV, and detecting the RIV, wherein the detected is greater than a maximum value usable as an RIV allocated to a second UE capable of receiving information from only one frequency band.
Abstract:
Disclosed are a micro-fluidic structure for detecting biomolecules and a micro-fluidic device having the same. More particularly, a target material including at least two cis-diols is detected by a first material containing a boronate moiety and a second material containing another boronate moiety while generating electrical signals.
Abstract:
A method for allocating a physical hybrid ARQ indicator channel (PHICH) is discussed. The method includes allocating a CDM group according to a cyclic prefix type in consideration of a ratio of the numbers of necessary CDM groups according to spreading factors, and allocating a PHICH to the allocated CDM group. The PHICH includes an ACK/NACK signal multiplexed by code division multiplexing (CDM). Therefore, resources for PHICH transmission are efficiently allocated and a transmission structure can be maintained irrespective of a spreading factor.
Abstract:
A method of, at a base station, transmitting spread signals in a wireless communication system includes spreading a plurality of signals using a spreading code with a predetermined spreading factor, multiplexing a plurality of spread signals to construct one or more spread signal groups, mapping the one or more spread signal groups to one or more specific Control Channel Elements (CCEs) set within one or more Orthogonal Frequency Division Multiplexing (OFDM) symbols, and transmitting the spread signals to User Equipments (UEs) through the one or more CCEs.
Abstract:
A method for a user equipment to perform random access to a base station in a wireless communication system that supports multiple uplink and downlink carriers is provided. In the method, system information including cell identifier information of each of the downlink component carriers and PRACH TF slot and preamble sequence information which is common to all downlink component carriers, the system information being broadcast through each downlink component carrier corresponding to the cell identifier information, is received. A PRACH preamble is transmitted through one uplink component carrier linked to the downlink component carriers using the received PRACH TF slot and preamble sequence information. An RACH response is received through each of the downlink component carriers. The cell identifier information is used to transmit a Radio Resource Control (RRC) connection request signal and cell identifier information of a downlink component carrier, which the user equipment desires to access among the downlink component carriers.
Abstract:
A method for efficiently scheduling virtual resource blocks to physical resource blocks is disclosed. In a wireless mobile communication system, for distributed mapping of consecutively allocated virtual resource blocks to physical resource blocks, when nulls are inserted into a block interleaver used for the mapping, they are uniformly distributed to ND divided groups of the block interleaver, which are equal in number to the number (ND) of physical resource blocks to which one virtual resource block is mapped.
Abstract:
The present invention relates to a conductive nanomembrane and a Micro Electro Mechanical System sensor using the same, and more particularly, a conductive nanomembrane that is formed by stacking a polymer electrolyte film and a carbon nanotube layer, and a MEMS sensor using the same.