Abstract:
Herein is reported a cultivation system for cultivating a pool of ovine B-cells or single deposited ovine B-cells in the presence of phorbol myristate acetate (PMA).
Abstract:
A system for managing of bulk liquids and/or bulk solids for in-vitro diagnostics is disclosed. The system comprises a sample processing unit and a container unit for receiving a supply container supplying the sample processing unit with a bulk liquid/solid and/or a waste container receiving waste from the sample processing unit. The system further comprises a weight measuring device comprising a loading plate, a base and a force measuring cell. The force measuring cell comprises a sensor comprising a tensioned sensor wire. The loading plate is biased with respect to the base by a weight applied to the loading plate by a container and to transfer force to the force measuring cell. The transferred force causes a deformation of the force measuring cell and a change in tension of the sensor wire causing a change in vibrational frequency resulting in a signal indicative of the weight of the container.
Abstract:
An identification, authentication and authorization method in a laboratory system is presented. The system comprises at least one laboratory device. The method comprises receiving identification data identifying a user; receiving identity confirmation data to authenticate the user; and generating authentication data upon successful authentication of the user. The authentication data is configured to enable authentication of the user based on only the identification data during a validity time period without repeated receipt of the identity confirmation data. The method further comprises receiving the identification data by an identification unit; validating the authentication data corresponding to the identification data comprising the step of verifying non-expiry of the validity time period; and granting authorization to the user for the laboratory device upon successful validation of the authentication data.
Abstract:
A laboratory sample distribution system is presented. The laboratory sample distribution system comprises a plurality of container carriers. The container carriers each comprise at least one magnetically active device such as, for example, at least one permanent magnet, and carry a sample container containing a sample. The system further comprises a transport plane to carry the multiple container carriers and a plurality of electro-magnetic actuators stationary arranged below the transport plane. The electro-magnetic actuators move a container carrier on top of the transport plane by applying a magnetic force to the container carrier. The system also comprises at least one transfer device to transfer a sample item, wherein the sample item is a container carrier, a sample container, part of the sample and/or the complete sample, between the transport plane and a laboratory station such as, for example, a pre-analytical, an analytical and/or a post-analytical station.
Abstract:
A method for controlling an analysis system is presented. The method comprises receiving, by an encryption unit, authentication data of a user. In the case of a successful authentication, a user-specific security code is generated by the encryption unit. The security code is outputted by the encryption unit to the authenticated user. The security code and the user-ID are received by an authentication unit coupled to the analysis system via a user-interface coupled to the authentication unit. The security code is decrypted by the authentication unit. If the decrypted security code matches with the user-ID, the user is authenticated at the authentication unit and an authentication signal is generated by the authentication unit for permitting the user to initialize at least one function of the analysis system.
Abstract:
Disclosed is a fluid dispensing device that includes at least one reservoir to hold the therapeutic fluid, at least one other unit requiring communication with ambient air, at least partly, to operate, and at least one housing defining an interior to retain the at least one reservoir and the at least one other unit. The at least one housing has at least one vent port formed on one or more of its walls. The at least one vent port is adapted to direct or communicate air to maintain pressure equilibrium between the air pressure in the interior of the at least one housing and the ambient air pressure outside the at least one housing, and provide communication with the ambient air to the at least one other unit requiring air to enable operation of the at least one other unit.
Abstract:
The present disclosure provide novel variants of T7 RNA polymerase. Embodiments of T7 variants, according to the instant invention, include a Cysteine-Serine substitution on position 723 of the amino acid sequence of the T7 polypeptide. Embodiments of T7 variants according to the instant invention have a DNA-dependent RNA polymerase enzymatic activity and a reduced tendency to form intramolecular homodimers by way of oxidizing thiol groups. The amino acid substitutions within the T7 variants disclosed herein impact minimally, if at all, the RNA polymerase activity of the T7 polypeptide. Further, the mutations of the disclosed embodiments may optionally be combined with mutations which provide enhanced thermostability compared to the wild-type reference.
Abstract:
Data transmissions between medical devices are governed by various communication protocols. For example, blood glucose measures may be retrieved wirelessly from a continuous glucose monitor in accordance with the ANT wireless communication protocol. Smaller data packets are preferably transferred in a standard data transfer mode which is optimized for speed and power management; whereas, larger data packets are transferred in a file sharing mode. Techniques are presented to address recovering data lost during the standard data transfer mode in an efficient manner and preferably without the use of the file sharing mode.
Abstract:
A method and system for automatic in-vitro diagnostic analysis are described. The method comprises adding a first reagent type and a second reagent type to a first test liquid during a first and second cycle times respectively. The addition of the first reagent type to the first test liquid comprises parallel addition of a second reagent type to a second test liquid during the first cycle time. The addition of the second reagent type to the first test liquid comprises parallel addition of a first reagent type to a third test liquid during the second cycle time, respectively.