Abstract:
Cold plates through which refrigerant flows define a slot between them that can receive a cassette through which sterile working fluid with a relatively low flow rate flows from an intravascular heat exchange catheter. The working fluid from the catheter is heated or cooled by heat exchange with the cold plates through the walls of the cassette to maintain the sterility of the working fluid. On the other hand, high flow rate working fluid chambers surround the cold plates and non-sterile working fluid from an external heat exchange pad flows through the high flow rate working fluid chambers to exchange heat through direct contact with the cold plates.
Abstract:
Embodiments of the invention provide a system for temperature control of the human body. The system includes an indwelling catheter with a tip-mounted heat transfer element. The catheter is fluidically coupled to a console that provides a heated or cooled heat transfer working fluid to exchange heat with the heat transfer element, thereby heating or cooling blood. The heated or cooled blood then heats or cools the patient's body or a selected portion thereof. In particular, methods and devices are provided for control and determination of the pressure within the heat transfer element.
Abstract:
The amount of granulated tissue, e.g., heart tissue, in a patient who has received therapeutic hypothermia following, e.g., cardiac arrest or myocardial infarction is ascertained using, e.g., magnetic resonance imaging, and based on the amount of such granulated heart tissue, subsequent treatment of the patient is implemented.
Abstract:
A chest compression device includes a piston to apply compression to the sternum and incorporates leaf springs simultaneously driven by the piston to apply lateral compression to the thorax during chest compressions. A motor in the chest compression device provides motive power to cyclically extend and contract the piston to provide therapeutic chest compressions. One end of each leaf spring is operably connected to the piston and the other end of each leaf spring is secured to the backboard/base or to a support leg of the chest compression device such that during extension of the piston, each leaf spring is compressed against the device base or leg which causes the springs to flex and provide lateral compression of the patient's thorax in addition to the sternal compression of the piston.
Abstract:
An enclosure or plenum that supports a looped pump tube is hingedly connected to a framed thin-walled heat exchange bag through which working fluid from an intravascular heat exchange catheter flows. The frame with bag can be inserted between cold plates to exchange heat with the working fluid flowing through the bag. With the framed bag between the plates, the looped pump tube from the enclosure or plenum is receivable in the raceway of a peristaltic pump, which pumps working fluid through the system.
Abstract:
An intravascular temperature management catheter includes a shaft through which working fluid can circulate to and from a proximal location on the shaft. The catheter extends from a connector hub. At least one heat exchange member is supported by a distal part of the shaft or other part of the catheter to receive circulating working fluid from the proximal location. A temperature sensor is supported on the catheter for generating a temperature signal representative of blood temperature to a control system. The temperature sensor includes first and second conductive leads having respective first and second distal segments on or in the catheter shaft. The first and second distal segments are arranged to be in thermal contact with blood flowing past the catheter when the catheter is disposed in a blood vessel of a patient. Also, the temperature sensor includes a joining body connected to proximal segments of the first and second leads. The joining body may be supported in the hub or in another location proximal to the first and second conductive leads.
Abstract:
An intravascular heat exchange catheter has serpentine-like supply and return conduits circulating working fluid with a heat exchange system to warm or cool a patient in which the catheter is intubated.
Abstract:
A patient temperature control catheter (10) includes working fluid supply (16) and return (18) lumens through which working fluid circulates to exchange heat with a patient in whom the catheter is positioned. At least one lumen is defined by plural coils (32) axially spaced from each other. At least a first coil is a large coil that inflates with working fluid to seat against a wall of a blood vessel in which the catheter is positioned, with blood flowing through the coil so as not to block blood flow in the vessel. Alternate centering structures (116) are disclosed.
Abstract:
A catheter has an inner sleeve through which refrigerant circulates to and from a source of refrigerant. The catheter also has an outer sleeve surrounding the inner sleeve, including a distal end thereof. The outer sleeve is filled with a frozen biocompatible substance. The refrigerant is separated from the biocompatible substance by one or more walls of the inner sleeve such that the refrigerant is isolated from a patient in whom the catheter is positioned by both the inner sleeve and the frozen biocompatible substance. The refrigerant circulates through the catheter when the catheter is positioned in the patient to maintain the biocompatible substance frozen as heat is transferred from the patient to the biocompatible substance.