Abstract:
An apparatus for performing a sensing application includes a reservoir to contain a solution, a dispenser to dispense the solution from the reservoir, and a substrate having a plurality of nano-fingers positioned to receive the dispensed solution, in which the plurality of nano-fingers are flexible, such that the plurality of nano-fingers are configurable with respect to each other. The apparatus also includes an illumination source to illuminate the received solution, an analyte introduced around the plurality of nano-fingers, and the plurality of nano-fingers, in which light is to be emitted from the analyte in response to being illuminated. The apparatus further includes a detector to detect the light emitted from the analyte.
Abstract:
According to an example, an apparatus for performing spectroscopy includes a structure having an opening. The apparatus also includes a plurality of surface-enhanced Raman spectroscopy (SERS) elements positioned within the structure and a porous membrane covering the opening and the plurality of SERS elements. The porous membrane is to allow a predetermined analyte to reach the SERS elements while substantially preventing other analytes from reaching the SERS elements.
Abstract:
A configurable grating based on collapsing nano-fingers includes a substrate; and a plurality of bendable nano-fingers supported on the substrate. The nano-fingers may be formed in a regular first array and the nano-fingers may be formed in a spacing that, upon closing at their tops, forms a second array to act as an optical grating or a diagnostic tool. A method of fabricating a configurable optical grating based on collapsing nano-fingers is also disclosed, as well as a method of determining an open or closed state for a plurality of nano-fingers.
Abstract:
Certain embodiments of the present invention are directed to a method of programming nanowire-to-conductive element electrical connections. The method comprises: providing a substrate including a number of conductive elements overlaid with a first layer of nanowires, at least some of the conductive elements electrically coupled to more than one of the nanowires through individual switching junctions, each of the switching junctions configured in either a low-conductance state or a high-conductance state; and switching a portion of the switching junctions from the low-conductance state to the high-conductance state or the high-conductance state to the low-conductance state so that individual nanowires of the first layer of nanowires are electrically coupled to different conductive elements of the number of conductive elements using a different one of the switching junctions configured in the high-conductance state. Other embodiments of the present invention are directed to a nanowire structure including a mixed-scale interface.
Abstract:
According to an example, an apparatus for performing spectroscopy includes a structure having an opening. The apparatus also includes a plurality of surface-enhanced Raman spectroscopy (SERS) elements positioned within the structure and a porous membrane covering the opening and the plurality of SERS elements. The porous membrane is to allow a predetermined analyte to reach the SERS elements while substantially preventing other analytes from reaching the SERS elements.
Abstract:
An apparatus for surface enhanced Raman spectroscopy includes a substrate, a nanostructure and a plasmonic material. The nanostructure and the plasmonic material are integrated together to provide electronic and plasmonic enhancement to a Raman signal produced by electromagnetic radiation scattering from an analyte.
Abstract:
A sensor for surface enhanced Raman spectroscopy (SERS) sensor includes surfaces and an actuator to adjust an intersurface spacing between the surfaces to contain an analyte and allow the analyte to be released from containment.
Abstract:
A hybrid nanostructure for molecular analysis is disclosed. The structure includes a plurality of nanofingers wherein each nanofinger is coated with a metal coating, is attached at one end to a substrate, and is freely bendable along its length such that the second ends of each nanofinger are capable of movement toward each other to form a cavity. The structure further includes a nanoparticle trapped in the cavity. An array of hybrid nanostructures and a method for fabricating the hybrid nanostructures are also disclosed.
Abstract:
An electrically driven device for surface enhanced Raman spectroscopy includes a first electrode, a substrate positioned proximate to the first electrode, a plurality of cone shaped protrusions formed integrally with or on a substrate surface, a Raman signal-enhancing material coated on each protrusion, and a second electrode positioned relative to the first electrode at a predetermined distance. Each of the protrusions has a tip with a radius of curvature ranging from about 0.1 nm to about 100 nm. The second electrode is positioned relative to the first electrode such that the electrodes together produce an electric field when a voltage bias is applied therebetween. The electric field has a field distribution that creates a stronger field gradient at a region proximate to the tips than at other portions of the substrate.
Abstract:
An asymmetrical-nanofinger device for surface-enhanced luminescence. The device includes a substrate, and a plurality of nanofingers coupled with the substrate. The plurality of nanofingers includes a primary nanofinger having a primary active-material cap, and a secondary nanofinger having a secondary active-material cap. An average diameter of the primary active-material cap is substantially greater than an average diameter of the secondary active-material cap. The primary nanofinger and secondary nanofinger of the plurality of nanofingers are to self-arrange into a close-packed configuration with an analyte molecule disposed between the primary active-material cap and the secondary active-material cap. A method for fabricating the asymmetrical-nanofinger device, and an optical apparatus including an optical component that includes the asymmetrical-nanofinger device are also provided.