Abstract:
A semiconductor device includes a substrate and an insulating layer on the substrate. The semiconductor device also includes a fin structure formed on the insulating layer, where the fin structure includes first and second side surfaces, a dielectric layer formed on the first and second side surfaces of the fin structure, a first gate electrode formed adjacent the dielectric layer on the first side surface of the fin structure, a second gate electrode formed adjacent the dielectric layer on the second side surface of the fin structure, and a doped structure formed on an upper surface of the fin structure in the channel region of the semiconductor device.
Abstract:
A method of forming a fin for a fin field effect transistor (FinFET) includes defining a trench in a layer of first material, where a width of an opening of the trench is substantially smaller than a thickness of the layer. The method includes growing a second material in the trench to form the fin and removing the layer of first material.
Abstract:
A semiconductor device includes a semiconductor fin formed on an insulator and sidewall spacers formed adjacent the sides of the fin. A gate material layer is formed over the fin and the sidewall spacers and etched to form a gate. The presence of the sidewall spacers causes a topology of the gate material layer to smoothly transition over the fin and the first and second sidewall spacers.
Abstract:
A color filter having a bi-layer metal grating is formed by nanoimprint lithography. Nanoimprint lithography, a low cost technology, includes two alternatives, i.e., hot-embossing nanoimprint lithography and UV-curable nanoimprint lithography. Manufacture steps comprises providing a substrate with a polymer material layer disposed thereon. A plurality of lands and grooves are formed in the polymer material layer, and a first metal layer and a second metal layer are disposed on the surfaces of the lands and grooves, respectively. Finally, a color filter having a bi-layer metal grating is obtained.
Abstract:
A method of manufacturing a MOSFET type semiconductor device includes forming a fin structure and a dummy gate structure over the fin structure. Sidewall spacers may be formed adjacent the dummy gate structure. The dummy gate structure may be later removed and replaced with a metal layer that is formed at a high temperature (e.g., 600°–700° C.). The cooling of the metal layer induces strain to the fin structure that affects the mobility of the double-gate MOSFET.
Abstract:
An event-based system and process for recording and playback of collaborative electronic presentations is presented. The present system and process includes a technique for recording collaborative electronic presentations by capturing and storing the interactions between each participant and presentation data where each interaction event is timestamped and linked to a data file comprising the presentation data. The present system and process also includes a technique for playing back the recorded collaborative electronic presentation, which involves displaying the presentation data in an order it was originally presented and reproducing the recorded interactions between each participant and the displayed presentation data at the same point in the presentation that they were originally performed, based on the aforementioned timestamps.
Abstract:
A method of fabricating an integrated circuit utilizes symmetric source/drain junctions. The process can be utilized for P-channel or N-channel metal oxide field semiconductor effect transistors (MOSFETS). The drain extension is deeper than the source extension. The source extension is more conductive than the drain extension. The transistor has reduced short channel effects and strong drive current and yet is reliable.
Abstract:
A method for forming a tri-gate semiconductor device that includes a substrate and a dielectric layer formed on the substrate includes depositing a first dielectric layer on the dielectric layer and etching the first dielectric layer to form a structure. The method further includes depositing a second dielectric layer over the structure, depositing an amorphous silicon layer over the second dielectric layer, etching the amorphous silicon layer to form amorphous silicon spacers, where the amorphous silicon spacers are disposed on opposite sides of the structure, depositing a metal layer on at least an upper surface of each of the amorphous silicon spacers, annealing the metal layer to convert the amorphous silicon spacers to crystalline silicon fin structures, removing a portion of the second dielectric layer, depositing a gate material, and etching the gate material to form three gates.
Abstract:
A non-volatile memory device includes a substrate, an insulating layer, a fin, a number of dielectric layers and a control gate. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. The dielectric layers are formed over the fin and the control gate is formed over the dielectric layers. The dielectric layers may include oxide-nitride-oxide layers that function as a charge storage structure for the memory device.
Abstract:
A non-volatile memory device includes a substrate, an insulating layer, a fin, a conductive structure and a control gate. The insulating layer may be formed on the substrate and the fin may be formed on the insulating layer. The conductive structure may be formed near a side of the fin and the control gate may be formed over the fin. The conductive structure may act as a floating gate electrode for the non-volatile memory device.