Abstract:
A nickel (Ni) based alloy for forging includes: 0.001 to 0.1 wt. % of carbon (C); 12 to 23 wt. % of chromium (Cr); 3.5 to 5.0 wt. % of aluminum (Al); 5 to 12 combined wt. % of tungsten (W) and molybdenum (Mo) in which the Mo content is 5 wt. % or less; a negligible small amount of titanium (Ti), tantalate (Ta) and niobium (Nb); and the balance of Ni and inevitable impurities.
Abstract:
A pump is disclosed. The pump may include at least one pumping mechanism. The at least one pumping mechanism may include a barrel formed of a substrate having a bore and a plunger formed of a substrate and slidably disposed within the bore in the barrel. The pump may further include a coating disposed on the plunger. The coating may include a main layer containing a tribological material and a sacrificial break-in layer disposed on the main layer, the break-in layer containing a tribological material.
Abstract:
A thruster designed to produce thrust by introducing a propellant to a catalyst layer from a propellant valve via a propellant introduction member and spurting out a gas resulting from decomposition of the propellant occurring on the catalyst layer, wherein the thruster comprises a chamber of an Ni alloy for holding the catalyst layer inside, the propellant introduction member is made of an Ni alloy and connects the propellant valve and the chamber, and a propellant valve flange of a Ti alloy with a plurality of columns of a Ti alloy is arranged between the chamber and the propellant valve to support the chamber by the columns.
Abstract:
A nickel (Ni) based alloy for forging includes: 0.001 to 0.1 wt. % of carbon (C); 12 to 23 wt. % of chromium (Cr); 3.5 to 5.0 wt. % of aluminum (Al); 5 to 12 combined wt. % of tungsten (W) and molybdenum (Mo) in which the Mo content is 5 wt. % or less; a negligible small amount of titanium (Ti), tantalate (Ta) and niobium (Nb); and the balance of Ni and inevitable impurities.
Abstract:
In a Ni-base alloy, an area-equivalent diameter D is calculated. D is defined by D=A1/2 from an area A of a largest nitride in a field of view when an observation area S0 is observed. This process is repeated in n fields of view for measurement, where n is the number of the fields of view for measurement, so as to acquire n pieces of data on D, and the pieces are arranged in ascending order D1, D2, . . . , Dn to obtain a reduced variate yj. The obtained values are plotted on X-Y axis coordinates, where an X axis corresponds to D and a Y axis corresponds to yj. In a regression line yj=a×D+b, yj is obtained when a target cross-sectional area S is set to 100 mm2. When the obtained yj is substituted into the regression line, the estimated nitride maximum size is ≦25 μm in diameter.
Abstract:
A nickel-based superalloy composition includes from about 5 to about 7 wt % aluminum, from about 4 to about 8 wt % tantalum, from about 3 to about 8 wt % chromium, from about 3 to about 7 wt % tungsten, from 1 to about 5 wt % molybdenum, from 1.5 to about 5 wt % rhenium, from 5 to about 14 wt % cobalt, from about 0 to about 1 wt % hafnium, from about 0.01 to about 0.03 wt % carbon, from about 0.002 to about 0.006 wt % boron, and balance nickel and incidental impurities. The composition may exhibit a sustained peak low cycle fatigue life at 1800° F./45 ksi of at least about 4000 cycles. The nickel-based superalloy composition may be used in single-crystal or directionally solidified superalloy articles, such as a blade, nozzle, a shroud, a splash plate, and a combustor of a gas turbine engine.
Abstract:
A nickel-based superalloy composition includes from about 5 to about 7 wt % aluminum, from about 4 to about 8 wt % tantalum, from about 3 to about 8 wt % chromium, from about 3 to about 7 wt % tungsten, from 1 to about 5 wt % molybdenum, from 1.5 to about 5 wt % rhenium, from 5 to about 14 wt % cobalt, from about 0 to about 1 wt % hafnium, from about 0.01 to about 0.03 wt % carbon, from about 0.002 to about 0.006 wt % boron, and balance nickel and incidental impurities. The composition may exhibit a sustained peak low cycle fatigue life at 1800° F./45 ksi of at least about 4000 cycles. The nickel-based superalloy composition may be used in single-crystal or directionally solidified superalloy articles, such as a blade, nozzle, a shroud, a splash plate, and a combustor of a gas turbine engine.
Abstract:
A gas turbine or turbine component partially or fully coated with a damping surface layer. The damping surface layer may have a thickness between 0.1 and 2000 microns and may be capable of dissipating vibration or modifying a resonance frequency of the gas turbine or turbine component at ambient room temperatures including operational temperatures greater than 500° F., and the damping surface layer comprises at least one of (a) at least two layers comprising a first layer of at least one hard material and a second layer comprising at least one soft material, (b) a composite comprising a nickel alloy with a heat softenable chemistry, (c) a fine-grained nickel-based superalloy, or (d) a porous metallic coating, a porous metallic and ceramic coating, or a ceramic coating.
Abstract:
A process for repairing cracks in a workpiece, such as a turbine engine component, comprises the steps of: providing a workpiece having a crack to be repaired; applying a nickel or cobalt base alloy material to a root of the crack in an amount sufficient to fill a portion of the crack; subjecting the workpiece with the nickel or cobalt base alloy material to a first heat treatment at a temperature in the range of from about 1950 to 2300° F. for a time period in the range of from about 5.0 to 30 minutes; applying a weld material to the crack; and subjecting the workpiece with the weld material to a second heat treatment.
Abstract:
A method for repairing a component such as a turbine blade is provided. At the end of its operating time, the component has, for example, a depletion of aluminium in a region near the surface. The application of a repair layer is provided including particles with an increased proportion of aluminium. A subsequent heat treatment may achieve the effect of equalizing the concentration of aluminium between the repair layer and the region near the surface, and so the aluminium content required for new components is achieved again.