Low latency in time division duplexing

    公开(公告)号:US10110363B2

    公开(公告)日:2018-10-23

    申请号:US14988069

    申请日:2016-01-05

    Abstract: Methods, systems, and devices for wireless communication are described. A wireless system utilizing one or more time-division duplexing (TDD) configured carriers may utilize a dual transmission time interval (TTI) structure (e.g., at the subframe level and symbol-level). The symbol level TTIs may be referred to as low latency (LL) TTIs, and may be organized within LL subframes. A LL subframe may be a subframe that is scheduled for transmissions in one direction (e.g., uplink or downlink, according to a TDD configuration) and may include multiple LL symbols scheduled for both uplink (UL) and downlink (DL) transmissions. Guard periods may be scheduled between adjacent LL symbols that have opposite directions of transmission to enable user equipment (UEs) to transition from receiving mode to transmit mode (or vice versa). The LL subframes may be transparent to receiving devices that do not support LL operations.

    Transmission time interval operation for low latency

    公开(公告)号:US10103856B2

    公开(公告)日:2018-10-16

    申请号:US15099364

    申请日:2016-04-14

    Abstract: Methods, systems, and devices for wireless communication are described. A base station may select, and a user equipment (UE) may identify, an initial symbol of a transmission time interval (TTI) based on a particular characteristic of a communication link between the base station and UE. A two-symbol TTI for one UE may thus be scheduled to align with or complement a longer TTI for another UE. For instance, the initial symbol of a two-symbol TTI may be restricted to certain symbol periods of a Long Term Evolution (LTE) subframe to limit interference with other transmissions scheduled during the subframe (e.g., reference signals, control channels, guard periods, etc.). Additionally or alternatively, a UE may identify and blindly decode control channel transmissions for low latency communications by assuming a presence of reference signals within the symbols that include a low latency control channel.

    TECHNIQUES FOR CROSS-CARRIER SCHEDULING USING MULTIPLE TRANSMISSION TIME INTERVAL DURATIONS

    公开(公告)号:US20180213532A1

    公开(公告)日:2018-07-26

    申请号:US15789776

    申请日:2017-10-20

    Abstract: Methods, systems, and devices for wireless communication are described in which scheduling of time and frequency resources for multiple component carriers (CCs) may be provided in a low latency physical downlink control channel (sPDCCH) transmission to a user equipment (UE). The scheduling information may include a first portion that is transmitted during a first transmission time interval (TTI) and that includes scheduling information (UE-specific or common for multiple UEs) for two or more shortened TTIs (sTTIs) on one or more CCs, and a second portion that may be specific to the particular sTTI on one or more CCs. Rate matching information may be provided to indicate portions of the sPDCCH that may be reallocated for shared channel transmissions. The scheduling information may be, in some cases, provided in a single-level scheduling information transmission for two or more UEs, that provides UE-specific resources on one or more CCs.

    DYNAMIC TIME DIVISION DUPLEXING
    270.
    发明申请

    公开(公告)号:US20180091285A1

    公开(公告)日:2018-03-29

    申请号:US15704733

    申请日:2017-09-14

    Abstract: Methods, systems, and devices for wireless communication are described. A base station may allocate resources for communication with a user equipment (UE). The resources may include one or more subframes, and each subframe may include one or more shortened transmission time intervals (sTTIs). Each sTTI may be assigned a transmission direction according to a time division duplex (TDD) pattern. Based on traffic needs and/or interference from other UEs and/or base stations, the base station may determine to modify the TDD pattern used for communication. Accordingly, a base station may transmit an indicator in a control message or control region of a TTI or sTTI, to indicate to users that a transmission direction of an sTTI in the TDD pattern is being changed. Subsequently, a user may communicate with the base station according to the reconfigured TDD pattern.

Patent Agency Ranking