Reduced-pressure wound treatment systems and methods employing manifold structures

    公开(公告)号:US10300181B2

    公开(公告)日:2019-05-28

    申请号:US15165657

    申请日:2016-05-26

    Abstract: Manifold structures, systems, and methods are disclosed that include using longitudinal members and one or more shaped projections to cause microstrain at a tissue site. In one instance a manifold structure includes a plurality of spaced longitudinal members and at least one shaped projection coupled to at least one of the plurality of longitudinal members for creating a microstrain at a tissue site. The at least one shaped projection includes a columnar member having a distal end and includes an enlarged member positioned at the distal end of the columnar member. The columnar member has a first outer diameter (D1) and the enlarged member has a second outer diameter (D2). The second outer diameter of the enlarged member is greater than the first outer diameter of the columnar member (D2>D1). Other systems, methods, and structures are presented.

    Delivery-and-fluid-storage bridges for use with reduced-pressure systems

    公开(公告)号:US10201643B2

    公开(公告)日:2019-02-12

    申请号:US14334510

    申请日:2014-07-17

    Abstract: Systems, methods, and apparatuses are presented that facilitate the provision of reduced pressure to a tissue site by using a delivery-and-fluid-storage bridge, which separates liquids and gases and provides a flow path for reduced pressure. In one instance, a delivery-and-fluid-storage bridge includes a delivery manifold for delivering reduced pressure to a treatment manifold at the tissue site and an absorbent layer proximate the delivery manifold adapted to receive and absorb liquids. The delivery manifold and the absorbent layer are encapsulated in an encapsulating pouch. A first aperture is formed proximate a first longitudinal end of the delivery-and-fluid-storage bridge for fluidly communicating reduced pressure to the delivery manifold from a reduced-pressure source, and a second aperture is formed on a patient-facing side of the delivery-and-fluid-storage bridge. Reduced pressure is transferred to the tissue site via the second aperture. Other systems, apparatuses, and methods are disclosed.

    Instillation cartridge for vacuum actuated fluid delivery

    公开(公告)号:US10124095B2

    公开(公告)日:2018-11-13

    申请号:US14794302

    申请日:2015-07-08

    Abstract: A fluid delivery system, method, and apparatus for providing instillation therapy with a negative-pressure source is described. The apparatus includes a housing having an ambient chamber and a negative-pressure chamber fluidly isolated from each other. The apparatus also includes a moveable barrier disposed in the housing between the ambient chamber and the negative-pressure chamber. The moveable barrier is operable to move between a charge position and a discharge position in response to negative pressure. A fluid source is disposed in the negative-pressure chamber and is collapsible in response to movement of the moveable barrier to the discharge position. The apparatus also includes a fluid outlet in fluid communication with the fluid source, a negative-pressure port in fluid communication with the negative-pressure chamber and configured to be coupled to a negative-pressure source, and a vent formed in the housing and fluidly coupled to the ambient chamber.

    DRESSING WITH CONTRACTING LAYER FOR LINEAR TISSUE SITES

    公开(公告)号:US20180235815A1

    公开(公告)日:2018-08-23

    申请号:US15958773

    申请日:2018-04-20

    Abstract: Systems, apparatuses, and methods for closing an opening through a surface of a tissue site are described. The system includes a sealing member adapted to cover the opening to form a sealed space and a negative-pressure source adapted to be fluidly coupled to the sealed space to provide negative pressure to the sealed space. The system also includes a contracting layer adapted to be positioned adjacent the opening and formed from a material having a firmness factor and a plurality of holes extending through the contracting layer to form a void space. The holes have a perforation shape factor and a strut angle causing the plurality of holes to collapse in a direction substantially perpendicular to the opening. The contracting layer generates a closing force substantially parallel to the surface of the tissue site to close the opening in response to application of the negative pressure.

Patent Agency Ranking