Abstract:
A fluid delivery system, method, and apparatus for providing instillation therapy with a negative-pressure source is described. The apparatus includes a housing having an ambient chamber and a negative-pressure chamber fluidly isolated from each other. The apparatus also includes a moveable barrier disposed in the housing between the ambient chamber and the negative-pressure chamber. The moveable barrier is operable to move between a charge position and a discharge position in response to negative pressure. A fluid source is disposed in the negative-pressure chamber and is collapsible in response to movement of the moveable barrier to the discharge position. The apparatus also includes a fluid outlet in fluid communication with the fluid source, a negative-pressure port in fluid communication with the negative-pressure chamber and configured to be coupled to a negative-pressure source, and a vent formed in the housing and fluidly coupled to the ambient chamber.
Abstract:
A system that may be adapted to distribute reduced pressure to a tissue site may include a dressing and a sealing member. The dressing may include a manifold layer, a storage layer, and a plurality of retainers. The manifold layer may be adapted to be positioned proximate the tissue site, and the storage layer may be positioned proximate the manifold layer. The plurality of retainers may be disposed in the storage layer. Each of the retainers may define a fluid communication channel through the storage layer. The retainers may be adapted to substantially preclude deformation of the storage layer into the fluid communication channels. The sealing member may be adapted to cover the dressing and to provide a fluid seal between the sealing member and the tissue site.
Abstract:
Systems and methods for delivery of fluid to a wound therapy dressing. In exemplary embodiments, a pressure sensor measures the pressure at the wound therapy dressing and restricts fluid flow to the wound therapy dressing when a predetermined pressure is achieve.
Abstract:
A system that may be adapted to distribute reduced pressure to a tissue site may include a dressing and a sealing member. The dressing may include a manifold layer, a storage layer, and a plurality of retainers. The manifold layer may be adapted to be positioned proximate the tissue site, and the storage layer may be positioned proximate the manifold layer. The plurality of retainers may be disposed in the storage layer. Each of the retainers may define a fluid communication channel through the storage layer. The retainers may be adapted to substantially preclude deformation of the storage layer into the fluid communication channels. The sealing member may be adapted to cover the dressing and to provide a fluid seal between the sealing member and the tissue site.
Abstract:
Systems and methods for treating a plurality of tissue sites include a multi-port therapy unit. The multi-port therapy unit includes a plurality of patient-side ports each fluidly coupled to a plurality of conduits and a fluid reservoir fluidly coupled to the plurality of ports. A plurality of pressure sensors are associated with the plurality of patient-side ports to determining a pressure associated with each conduit. A controller is operatively coupled to the plurality of pressure sensors to receive treatment pressure data, monitor pressure for each pressure sensor of the plurality of pressure sensors, and signal an alarm condition if the pressure is outside of a pre-selected range. The system includes a reduced-pressure source fluidly coupled to a dressing at each tissue site through the multi-port therapy unit.
Abstract:
A fluid delivery system, method, and apparatus for providing instillation therapy with a negative-pressure source is described. The apparatus includes a housing having an ambient chamber and a negative-pressure chamber fluidly isolated from each other. The apparatus also includes a moveable barrier disposed in the housing between the ambient chamber and the negative-pressure chamber. The moveable barrier is operable to move between a charge position and a discharge position in response to negative pressure. A fluid source is disposed in the negative-pressure chamber and is collapsible in response to movement of the moveable barrier to the discharge position. The apparatus also includes a fluid outlet in fluid communication with the fluid source, a negative-pressure port in fluid communication with the negative-pressure chamber and configured to be coupled to a negative-pressure source, and a vent formed in the housing and fluidly coupled to the ambient chamber.
Abstract:
An apparatus for use in a multi-orientation liquid collection canister to collect liquid from a tissue site is provided. The apparatus includes a substantially planar, liquid-air separator disposed on at least one wall of the multi-orientation liquid collection canister to prevent the liquid from exiting the multi-orientation liquid collection canister. The apparatus further includes an elongated member connected to the liquid-air separator and extending away from the liquid-air separator into a first space of the multi-orientation liquid collection canister. The elongated member has a membrane defining a second space along at least a portion of a length of the elongated member. At least a portion of the membrane allows gaseous communication between the first space and the second space.
Abstract:
A sealing system that includes a switchable drape is presented. The drape provides enhanced sealing by using a high-strength adhesive. In one instance, the switchable drape has a plurality of perforations through which a switching solution may be delivered to the high-strength adhesive. The switching solution causes the high-strength adhesive to become less adhesive so that the switchable drape may be removed more easily. Other systems, methods, and drapes are presented.
Abstract:
A wound fluid collection system includes a canister adapted to collect bodily fluids from a tissue site. The canister includes an acoustic transducer adapted and positioned to insonify a cavity within the canister, the cavity being defined by a wall of the canister and the bodily fluids collected within the canister. A resonant frequency may be calculated based on a resulting received signal from the insonification. The resonant frequency may indicate a volume of the cavity within the canister. The difference between a known volume of the canister and the calculated volume of the cavity provides the volume of bodily fluid collected in the canister.