Abstract:
Provided are a crystalline alloy having significantly better thermal stability than an amorphous alloy as well as glass-forming ability, and a method of manufacturing the crystalline alloy. The present invention also provides an alloy sputtering target that is manufactured by using the crystalline alloy, and a method of manufacturing the alloy target. According to an aspect of the present invention, provided is a crystalline alloy having glass-forming ability which is formed of three or more elements having glass-forming ability, wherein the average grain size of the alloy is in a range of 0.1 μm to 5 μm and the alloy includes 5 at % to 20 at % of aluminum (Al), 15 at % to 40 at % of any one or more selected from copper (Cu) and nickel (Ni), and the remainder being zirconium (Zr).
Abstract:
The present invention relates to the manufacture of a high capacity electrode by synthesizing an excellent Li2MnO3-based composite material Li(LixNiyCozMnwO2) to improve the characteristics of an inactive Li2MnO3 material with a specific capacity of about 460 mAh/g. Here, a manufacturing method of a cathode material for a lithium secondary battery uses a Li2MnO3-based composite material Li(LixNiyCozMnwO2) by reacting a starting material wherein a nickel nitrate solution, a manganese nitrate solution and a cobalt nitrate solution are mixed, with a complex agent by co-precipitation.
Abstract translation:本发明涉及通过合成优异的Li 2 MnO 3基复合材料Li(Li x Ni y Co z Mn n O 2 O 2)来制造高容量电极,以改善比电容为约460mAh / g的无活性Li 2 MnO 3材料的特性。 这里,锂二次电池用正极材料的制造方法使用混合有硝酸镍溶液,硝酸锰溶液和硝酸钴溶液的原料与Li2MnO3系复合材料Li(Li x Ni y Co z Mn n O 2 O 2) 复合剂通过共沉淀。
Abstract:
Disclosed is high thermal conductivity Al—Si—Fe—Zn alloy for die casting which comprises 1.0 weight % to 2.0 weight % of silicon (Si), 0.5 weight % to 1.6 weight % of iron (Fe), 0.6 weight % to 1.6 weight % of zinc (Zn), with the remainder being aluminum (Al) and inevitable impurities.
Abstract:
Disclosed are an epoxy compound having an alkoxysilyl group, a composite of which exhibits good heat resistant properties and/or a cured product of which exhibits good flame retardant properties, a method of preparing the same, a composition comprising the same, and a cured product and a use of the composition. An alkoxysilylated epoxy compound comprising at least one of Chemical Formula S1 substituent and at least two epoxy groups in a core, a method of preparing the epoxy compound by an allylation, a claisen rearrangement, an epoxidation and an alkoxysilylation, an epoxy composition comprising the epoxy compound, and a cured product and a use of the composition are provided. The composite of the disclosed exhibits improved chemical bonding, good heat resistant properties, a low CTE, a high glass transition temperature or Tg-less The cured product of the composition exhibits good flame retardant properties.
Abstract:
A method for manufacturing a melt-spun nonwoven fabric, in which fibers obtained by melt-spinning a thermoplastic polymer through a spinning nozzle having at least one or more nozzle holes are collected by high-speed air stream according to a spunbond method, includes: the steps of: allowing the melt-spun fibers to pass through local nozzle heaters of a nozzle heating mantle located just on the underside of the spinning nozzle during the spinning; and allowing the melt-spun fibers to be subjected to momentary local heating with a temperature difference of 0.1 to 1,000° C. from a temperature of a pack body. Polypropylene (PP) having a melt flow index (MFI) of 3 to 900 or polyethylene terephthalate (PET) having intrinsic viscosity (I.V.) of 0.5 to 3.0 is subjected to momentary local heating to a high temperature during the spinning to thus perform fiber fineness.
Abstract:
Proposed is a Fe-based alloy and a filler metal including the same. The Fe-based alloy contains 15% to 25% by weight of nickel (Ni), 0.5% to 3% by weight of manganese (Mn), 2% to 8% by weight of cobalt (Co), 0.1% to 0.5% by weight of carbon (C), and the balance iron (Fe) and unavoidable impurities.
Abstract:
Provided are a polishing pad including a porous protrusion pattern, a polishing device including the same, and a manufacturing method of a polishing pad. The polishing pad includes a support layer, and a pattern layer disposed directly on the support layer, the pattern layer comprising a protrusion pattern having a plurality of pores. The pores contribute to an increase in perimeter length of the protrusion pattern in plan view, and a perimeter length of a polishing surface formed by the protrusion pattern per unit area is in a range of 1.0 mm/mm2 to 50.0 mm/mm2.
Abstract:
The present disclosure relates to an epoxy resin of which distribution of molecular weight having distribution range of molecular weight of 300 to 2,000,000 is adjusted such that an upper limit value is increased to a maximum of 2,000,000, a method of preparing the same, a composition comprising the same, and a use thereof. The epoxy resin having controlled distribution of molecular weight of the present disclosure may have improved thermal properties of an epoxy system by expanding the distribution of molecular weight, and may exhibit excellent processability.
Abstract:
This application relates to a nickel-based superalloy suitable for additive manufacturing and a method for manufacturing a high-temperature member using the same. The nickel-based superalloy includes 13.7% to 14.3% by weight of Cr, 9.0% to 10.0% by weight of Co, 3.7% to 4.3% by weight of Mo, 2.6% to 3.4% by weight of Ti, 3.7% to 4.3% by weight of W, 2.6% to 3.4% by weight of Al, 0.15% to 0.19% by weight of C, greater than 0% by weight and not less than 0.005% by weight of B, 0.01% to 0.05% by weight of Zr, 2.0% to 2.7% by weight of Ta, 0.6% to 1.1% by weight of Hf, Ni residue, and unavoidable impurities. The nickel-based superalloy has a high fraction of strengthening phase, thereby maintaining excellent high-temperature strength. Additive manufacturing with the nick-based superalloy is much easier than existing nickel-based superalloys, thereby cost-effectively providing maximized cooling efficiency.
Abstract:
According to the present disclosure, a hot stamping forming method for forming components having various strength according to parts through cooling control for each position includes: setting a required strength for each product part for a sheet supplied into a multi-point forming mold device to which a plurality of forming modules are coupled; adjusting an arrangement of the plurality of forming modules according to the set required strength; and performing cooling control for each part by controlling an amount of cooling air or mist sprayed to the sheet by the air jet nozzle in order to achieve a required cooling speed for each strength part of the supplied sheet, wherein components having various shapes are formable with respect to the supplied sheet in a single mold.