摘要:
A battery management system includes one or more lithium ion cells in electrical connection, each said cell comprising: first and second working electrodes and one or more reference electrodes, each reference electrode electronically isolated from the working electrodes and having a separate tab or current collector exiting the cell and providing an additional terminal for electrical measurement; and a battery management system comprising a battery state-of-charge monitor, said monitor being operable for receiving information relating to the potential difference of the working electrodes and the potential of one or more of the working electrodes versus the reference electrode.
摘要:
Exemplary embodiments of the present invention provide flexible, multi-voltage battery modules having multiple cells that are nested together. The cells can be, for example, cylindrical lithium ion cells. To increase cell package density, the cells can be disposed in a nested configuration so that adjacent cell centers form equilateral triangles. The cells can be placed in a housing or case with interlocking tabs that allow multiple modules to be connected together. Within a module, the cells can be connected in different configurations by buss bars at the top and the bottom of the battery cells. The different configurations may provide different voltages for the module.
摘要:
Systems and methods for a lithium-ion battery cell are disclosed. In one example, a method for forming a cathode for a lithium-ion battery cell includes forming a pre-lithiated cathode with a pre-lithiation reagent and positioning the pre-lithiated cathode in contact with an electrolyte. An electrolyte additive is injected into the electrolyte to form a passivation layer at the pre-lithiated cathode, the passivation layer inhibiting continued decomposition of the pre-lithiation reagent of the pre-lithiated cathode after completion of a formation cycle of the lithium-ion battery cell.
摘要:
Systems and methods are provided for a battery management system (BMS) having a protection circuit. In one example, a vehicle battery system may include the BMS, the BMS including a cutoff circuit coupled to a short-circuit protection circuit, and a battery pack, wherein the short-circuit protection circuit may include a diode array, cathodes of the diode array being coupled to a positive terminal post of the battery pack and anodes of the diode array being coupled to a negative terminal post of the battery pack. In some examples, the cutoff circuit may further be coupled to a reverse bias protection circuit including a switchable current path arranged between a control input of the cutoff circuit and an output of the cutoff circuit. In this way, the vehicle battery system may be protected from unexpected voltage conditions via the BMS redirecting and dissipating excess current away from the cutoff circuit.
摘要:
Methods and systems are provided for forming a cathode pre-lithiation layer for a lithium-ion battery. In one example, a slurry for forming the cathode pre-lithiation layer may include a solvent including a uniform dispersion of a nanoscale cathode pre-lithiation reagent. The slurry may be cast onto a porous cathode active material layer and dried and calendered to form the cathode pre-lithiation layer. In some examples, the slurry may have a viscosity of up to 5000 cP at a shear rate of 100 s−1. In this way, delamination and interfacial impedance between the cathode pre-lithiation layer and the porous cathode active material layer may be reduced relative to a higher viscosity cathode pre-lithiation layer having a larger scale cathode pre-lithiation reagent cast onto a non-porous or low-porosity cathode active material layer.
摘要:
Methods and systems are provided for a blend of cathode active materials. In one example, the blend of cathode active materials provides a high power battery with low direct current resistance while improving lithium ion cell safety performance. Methods and systems are further provided for fabricating the cathode active material blend and a battery including the blend.
摘要:
A positive electroactive material is described, including: a lithium iron manganese phosphate compound having a composition of LiaFe1-x-yMnxDy(PO4)z, wherein 1.0
摘要:
A binder for an electrode is provided herein. In one example, the electrode may include a current collector, and an electrode coating layer, the electrode coating layer including an electrode active material and a binder, where the binder may comprise an aromatic polyamide-based compound, and the binder may be present at greater than 0 wt % and less than or equal to 30 wt % of the electrode coating layer. In one example, the binder provides stronger cohesion between particles of the electrode active material. Methods and systems are further provided for fabricating the electrode including the binder.
摘要:
A silicon anode comprising a hybrid binder at a blending ratio of 10-90 wt. % for use in a Li-ion battery is provided. The combination of a hybrid binder in the Si anode for use in a rechargeable Li-ion cell shows the unexpected result of extending the cycle life and a balancing effect between adhesion strength and first cycle efficiency.
摘要:
A rechargeable battery is designed with cells having a specific combination of anode, cathode, and electrolyte compositions to maintain long cycle life at extreme high temperatures and deliver high power at extreme low temperatures. These properties can significantly reduce or altogether eliminate the need for thermal management circuitry, reducing weight and cost. Applications in telecommunications backup, transportation, and military defense are contemplated.