Abstract:
The invention relates to ultrasonic welding of industrial fabrics. Specifically, the invention relates to methods for ultrasonically welding the seam area of industrial fabrics using a textured horn and/or anvil. The fabric edges are overlapped as woven or one or both edges can have some warp or weft yarns raveled out. The method involves ultrasonically bonding the overlapped fabric edges, reducing the caliper of the two stacked edges to match the body caliper of the fabric itself. The bonded area can then be perforated using laser or other mechanical means to produce a seam having the same woven texture and permeability (air and/or water) as the body of the fabric.
Abstract:
A structure for use in a compressible resilient pad. The structure contains both axially elastomeric strands and relatively inelastic strands co-extruded in various patterns. The structure has a high degree of both compressibility under an applied normal load and excellent recovery (resiliency or spring back) upon removal of that load.
Abstract:
A multilayer belt structure that can be used for creping or structuring a cellulosic web in a tissue making process. The multilayer belt structure allows for the formation of various shaped and sized openings in the top surface of the belt, while still providing a structure having the strength, durability, and flexibility required for tissue making processes.
Abstract:
A multilayer belt structure that can be used for creping or structuring a cellulosic web in a tissue making process. The multilayer belt structure allows for the formation of various shaped and sized openings in the top surface of the belt, while still providing a structure having the strength, durability, and flexibility required for tissue making processes.
Abstract:
Described herein are component compositions comprising a blend of a polymer resin together with silica glass beads. In certain embodiments, the components demonstrate improved abrasion resistance as do the industrial fabrics produced that comprise at least one component of the instant disclosure.
Abstract:
A multilayer belt structure that can be used for creping or structuring a cellulosic web in a tissue making process. The multilayer belt structure allows for the formation of various shaped and sized openings in the top surface of the belt, while still providing a structure having the strength, durability, and flexibility required for tissue making processes.
Abstract:
A multilayer belt structure that can be used for creping or structuring a cellulosic web in a tissue making process. The multilayer belt structure allows for the formation of various shaped and sized openings in the top surface of the belt, while still providing a structure having the strength, durability, and flexibility required for tissue making processes.
Abstract:
A structure for use in a compressible resilient pad. The structure contains both axially elastomeric strands and relatively inelastic strands co-extruded in various patterns. The structure has a high degree of both compressibility under an applied normal load and excellent recovery (resiliency or spring back) upon removal of that load.
Abstract:
The present application discloses improved cellulosic products and methods of making improved cellulosic products using split base core wet press felt designs having at least a first woven base core material and a second woven base core material, wherein the first and second base core materials are separated by at least one fibrous batting material. The present application further discloses improved cellulosic products and methods of making improved cellulosic products using press felts designs having an apertured polymeric sheet-side surface.
Abstract:
A method of fabricating a fiber structure by multilayer three-dimensional weaving between a plurality of weft yarns and of warp yarns, the fiber structure having at least first and second portions that are adjacent in the warp direction, the first portion presenting, in a direction perpendicular to the warp and weft directions, a thickness greater than the thickness of the second portion, includes making the first portion using a step of three-dimensionally weaving warp and weft layers in which a fiber fabric is formed in the form of a Mock-Leno weave grid in a core of the first portion together with skins at a surface of the first portion, a weave of the skins being modified locally so as to deflect certain warp yarns from said skins and weave them with the fiber fabric in the form of the Mock-Leno weave grid.