Abstract:
A system and method are described for performing tear film structure measurement. A broadband light source illuminates the tear film. A spectrometer measures respective spectra of reflected light from at least one point of the tear film. A color camera performs large field of view imaging of the tear film, so as to obtain color information for all points of the tear film imaged by the color camera. A processing unit calibrates the camera at the point measured by the spectrometer so that the color obtained by the camera at the point matches the color of the spectrometer at the same point. The processing unit determines, from the color of respective points of the calibrated camera, thicknesses of one or more layers of the tear film at the respective points. Other applications are also described.
Abstract:
A system (10) for analyzing an object (11) includes a light source (12) producing multiple light components, each of different wavelength and a respective amplitude, phase and polarization. An optical element (13) directs the light components on to the object to create known 2D patterns at different image planes displaced from the optical element by distances that are known functions of the wavelength of the light component. A 2D imager (20) images the 2D patterns and produces a plurality of full view 2D wavelength dependent patterns each corresponding to a known distance from the optical element and each having variable image contrast dependent on displacement of a surface of the object from the image plane, maximal image contrast being achieved when the surface of the object and image plane are coincident. A processing unit (25) determines the object surface based on the variable image contrast of each image.
Abstract:
A method for high dynamic range and high accuracy interferometry measurements is described. The method uses a broadband light source for generating light, an interferometer, a phase shifting device, an imaging optical system and a detector array for collecting and measuring the reflected light from an object. The detected light is processed by a processor unit to obtain the object's surface.
Abstract:
A system and method are described for performing tear film structure measurement. A broadband light source illuminates the tear film. A spectrometer measures respective spectra of reflected light from at least one point of the tear film. A color camera performs large field of view imaging of the tear film, so as to obtain color information for all points of the tear film imaged by the color camera. A processing unit calibrates the camera at the point measured by the spectrometer so that the color obtained by the camera at the point matches the color of the spectrometer at the same point. The processing unit determines, from the color of respective points of the calibrated camera, thicknesses of one or more layers of the tear film at the respective points. Other applications are also described.
Abstract:
Systems and methods for detecting physical characteristics of a multilayered tissue of a subject, such as a tear film including analyzing received detector-output indicative of optical properties of light reflected or deflected from the respective multilayered tissue, to determine spectral properties of the multilayered tissue; and determining physical characteristics of the multilayered tissue by using multiple spectral models of the of the multilayered tissue, each model being associated with spectral properties indicative of different tissue characteristics, wherein physical characteristics of the multilayered tissue are determined by hierarchal determination of a best-fit model from the multiple spectral models.
Abstract:
Apparatus and methods are described for performing tear film structure measurement on a tear film of an eye of a subject. A broadband light source (100) is configured to generate broadband light. A spectrometer (250) is configured to measure a spectrum of light of the broadband light that is reflected from at least one spot on the tear film, the spot having a diameter of between 100 microns and 240 microns. A computer processor (28) is coupled to the spectrometer and configured to determine a characteristic of the tear film based upon the spectrum of light measured by the spectrometer. Other applications are also described.
Abstract:
Apparatus and methods are described for calibrating an optical system that is used for measuring optical properties of a portion of a subjects body. During a calibration stage, a front surface of a calibration object (300) is illuminated, light reflected from a plurality of points on the calibration object (300) is detected, and intensities of the light reflected from the plurality of points on the calibration object (300) are measured. During a measurement stage, the portion of the subjects body is illuminated, and light reflected from the portion of the subjects body is detected. Measurements performed upon the light that was reflected from the portion of the subjects body are calibrated, using the measured intensities of the light reflected from the plurality of points on the calibration object (300). Other applications are also described.
Abstract:
Apparatus and methods are described for performing tear film structure measurement on a tear film of an eye of a subject. A broadband light source (100) is configured to generate broadband light. A spectrometer (250) is configured to measure a spectrum of light of the broadband light that is reflected from at least one spot on the tear film, the spot having a diameter of between 100 microns and 240 microns. A computer processor (28) is coupled to the spectrometer and configured to determine a characteristic of the tear film based upon the spectrum of light measured by the spectrometer. Other applications are also described.
Abstract:
Apparatus and methods are described, for detecting the surface topography of a portion of a curved surface of an object. A beam of light is directed toward the surface from a broad angle of incidence with respect to an optical axis of a camera. Light reflected from the surface is received by the camera, via a narrow-angle aperture. One or more darkened regions in the received light are detected, and the surface topography of portion of the surface is detected at least partially in response to the detected darkened regions. Other applications are also described.
Abstract:
Apparatus and methods are described for determining tomographic and/or topographic data relating to an object. The object is illuminated with at least one wave packet from light generated by a multi-spectral light source. The wave packet is split into two split wave packets, and an optical path difference (OPD) is introduced between the two split wave packets, that is smaller than the coherence length of the wave packet. The two split wave packets are combined to generate a 2D image of the illuminated object, and the data relating to the object is determined by processing the 2D image using long coherence phase shift interferometry algorithms, by analyzing the 2D image as if the 2D image was generated using monochromatic light having a wavelength that is equal to a mean wavelength of the wave packet. Other applications are also described.