Abstract:
A cross-connect wiring system includes a terminal block, a connecting block and a patch plug. The terminal block has a front side and a rear side. The connecting block is mounted on the front side of the terminal block. At least two pairs of tip and ring insulation displacement contacts (IDCs) are at least partially mounted within the connecting block. Each of these IDCs has a first end that includes a first conductor receiving slot and a second end that includes a second conductor receiving slot. The first and second ends of each IDC are non-collinear. Both the first and second conductor receiving slots of each IDC are on the front side of the terminal block. The patch plug includes a housing and at least two pairs of tip and ring plug contacts. The tip and ring plug contacts of at least one of the two pairs of tip and ring plug contacts cross over each other within the plug housing.
Abstract:
A printed circuit board (PCB) is provided that maximizes compensation capacitance per unit area of the PCB while minimizing signal transmission delays in the PCB. The PCB includes a first section having a first dielectric constant (DK), a second section having a second DK lower than the first DK and provided above or below the first section, a plurality of crosstalk compensation elements provided in the first section, and a plurality of circuit elements provided in the second section.
Abstract:
A communications jack includes: a jack frame having a plug aperture; a plurality of contact wires, the contact wires having free ends that extend into the plug aperture, the free ends of the contact wires being arranged serially in side-by-side relationship; a plurality of insulation displacement connectors; a dielectric mounting substrate, the mounting substrate including a plurality of mounting locations for contact wires and a plurality of mounting locations for insulation displacement connectors; and a plurality of conductors mounted on the substrate, each of the conductors extending, defining a path, and establishing electrical connection between a contact wire mounting location and an insulation displacement connector mounting location. At least one of the conductors includes two self-coupling sections that are immediately adjacent to each other and that have identical instantaneous current direction such that the sections self-couple and cause a localized increase in inductance.
Abstract:
A cross-connect wiring system includes a terminal block, a connecting block and a patch plug. The terminal block has a front side and a rear side. The connecting block is mounted on the front side of the terminal block. At least two pairs of tip and ring insulation displacement contacts (IDCs) are at least partially mounted within the connecting block. Each of these IDCs has a first end that includes a first conductor receiving slot and a second end that includes a second conductor receiving slot. The first and second ends of each IDC are non-collinear. Both the first and second conductor receiving slots of each IDC are on the front side of the terminal block. The patch plug includes a housing and at least two pairs of tip and ring plug contacts. The tip and ring plug contacts of at least one of the two pairs of tip and ring plug contacts cross over each other within the plug housing.
Abstract:
An insulation displacement contact (IDC) includes: upper and lower ends, each of the upper and lower ends including a slot configured to receive a conductor therein, the slots being generally parallel and non-collinear; and a transitional area merging with the upper and lower ends. An IDC of this configuration can be employed, for example, in 110-style connectors, and can enable such connectors to compensate for differential to common mode crosstalk between adjacent IDC pairs.
Abstract:
A communications connector includes: a dielectric mounting substrate; at least four pairs of conductors mounted on the mounting substrate, each of the conductors including a free end segment, each of the free end segments being positioned in side-by-side and generally parallel relationship; and at least four pairs of terminals mounted on the mounting substrate, wherein each of the pairs of terminals is electrically connected to a respective pair of conductors. A first pair of conductor free end segments is immediately adjacent each other, a second pair of conductor free end segments is immediately adjacent each other and positioned one side of the first pair, a fourth pair of conductor free end segments is immediately adjacent each other and positioned on an opposite side of the first pair, and a third pair of conductor free end segments sandwiches the first pair, with one of the conductor free end segments of the third pair being disposed between the first and second pairs, and the other of the conductor free end segments being disposed between the first and fourth pairs. Each of the first, second and fourth pairs of conductors includes a crossover between the conductors of the pairs, and wherein the third pair of conductors includes two crossovers between its conductors.
Abstract:
A telecommunications connector includes first and second pairs of electrical conductors. The first and second pairs of conductors are arranged in one region of the connector such that one conductor of the first pair is selectively positioned to be closer to both of the conductors of the second pair than is the other conductor of the first pair, and such that the one conductor of the first pair couples a common mode signal of a first polarity onto the conductors of the second pair. In another region of the connector the other conductor of the first pair is selectively positioned to be closer to both of the conductors of the second pair to asymmetrically couple a common mode signal of a second polarity onto the conductors of the second pair.
Abstract:
A communications jack assembly includes: a jack frame having a plug aperture; a dielectric mounting substrate attached to the jack frame; and a plurality of conductors engaged with the mounting substrate, each of the conductors including a fixed end portion mounted with the mounting substrate and a free end portion extending into the plug aperture for electrical contact with a mating plug, each of the free end portions having substantially the same profile and being substantially transversely aligned in side-by-side relationship. A first pair of conductors is sandwiched inside a second pair of conductors. The second pair of conductors includes a crossover, the positioning of crossover being selected to provide differential to common mode crosstalk compensation.
Abstract:
A communications connector includes: a dielectric mounting substrate; at least four pairs of conductors mounted on the mounting substrate, each of the conductors including a free end segment, each of the free end segments being positioned in side-by-side and generally parallel relationship; and at least four pairs of terminals mounted on the mounting substrate, wherein each of the pairs of terminals is electrically connected to a respective pair of conductors. A first pair of conductor free end segments is immediately adjacent each other, a second pair of conductor free end segments is immediately adjacent each other and positioned one side of the first pair, a fourth pair of conductor free end segments is immediately adjacent each other and positioned on an opposite side of the first pair, and a third pair of conductor free end segments sandwiches the first pair, with one of the conductor free end segments of the third pair being disposed between the first and second pairs, and the other of the conductor free end segments being disposed between the first and fourth pairs. Each of the first, second and fourth pairs of conductors includes a crossover between the conductors of the pairs, and wherein the third pair of conductors includes two crossovers between its conductors.
Abstract:
A connector is provided for simultaneously improving both the NEXT high frequency performance when low crosstalk plugs are used and the NEXT low frequency performance when high crosstalk plugs are used. The connector includes a first compensation structure provided on an inner metalized layer of the PCB at a first stage area of the PCB, and a second compensation structure, provided at a second stage area of the PCB, for increasing compensation capacitance with increasing frequency.