Abstract:
The disclosure relates to a process for purifying crude caprolactam. The process involves converting a first mixture of 6-amino capronitrile and water to a second mixture of caprolactam ammonia, water, high boilers and low boilers using a catalyst. The ammonia is removed from the second mixture to obtain a third mixture. Water is removed from the third mixture to give crude caprolactam, high boiler and low boilers. Purified caprolactam is then obtained by a series of distillation steps.
Abstract:
The invention relates to a method for removing, by distillation, 6-aminocapronitrile from mixtures that contain 6-aminocapronitrile, adipodinitrile and hexamethylenediamine, by a) removing the hexamethylenediamine from the mixture while obtaining a mixture (I) that has a hexamethylenediamine content of less than 1 wt. -%, b) removing completely or partially the 6-aminocapronitrile from mixture (I) while obtaining a mixture (II) whose content in substances that have a higher boiling point as 6-aminocapronitrile under distillation conditions and that cannot be formed by dimerization reactions when 6-aminocapronitrile is thermally treated is less than 1 wt. -%, and c) completely or partially removing from mixture (II) the hexamethylenediamine that might be present while obtaining a mixture (IV) whose hexamethylenediamine content is higher than that of mixture (II), and a mixture (V) whose hexamethylenediamine content is lower than that of mixture (II).
Abstract:
A process is provided for the regeneration of a heterogeneous catalyst used for the preparation of compounds containing NH2 groups by the hydrogenation, with hydrogen, of compounds containing at least one unsaturated carbon-nitrogen bond, wherein a) the feed of the compound to be hydrogenated is stopped and b) the heterogeneous catalyst is treated with a compound of the formula R1R2N—CO—R3 (I), in which R1 is hydrogen or C1-C4 alkyl and R2, R3 independently of one another are each hydrogen or C1-C4 alkyl or together are a C3-C6 alkylene group, or mixtures of such compounds, at a pressure ranging from 0.1 to 30 MPa and a temperature ranging from 100 to 300° C., with the proviso that the compound of formula (I) is in liquid form during the treatment.
Abstract:
A process for preparing a polymer, which comprises a) reacting a mixture (I) containing 6-aminocapronitrile and water in the presence of a catalyst to obtain a mixture (II) containing caprolactam, ammonia, water, high boilers and low boilers, then b) removing ammonia from mixture (II) to obtain a mixture (III) containing caprolactam, water, high boilers and low boilers, then c) removing all or some of the water from mixture (III) to obtain a mixture (IV) containing caprolactam, high boilers and low boilers and then d) feeding mixture (IV) to a polymerization reaction, and also the polymer obtainable by this process, the use of the polymer for producing fibers, sheetlike structures and moldings, and also fibers, sheetlike structures and moldings obtainable using such a polymer.
Abstract:
A material useful as catalyst for the hydrogenation of alpha, omega-dinitriles comprises(a) iron or a compound based on iron or mixtures thereof,(b) from 0.001 to 0.3% by weight based on (a) of a promoter based on 2, 3, 4 or 5 elements selected from the group consisting of aluminum, silicon, zirconium, titanium and vanadium,(c) from 0 to 0.3% by weight based on (a) of a compound based on an alkali and/or alkaline earth metal, and also(d) from 0.001 to 1% by weight based on (a) of manganese.
Abstract:
The invention relates to a process for preparing primary amines by hydrogenating nitrites in the presence of a catalyst comprising cobalt and optionally, in addition, nickel and also at least one further doping metal on a particulate support material, the cobalt and, if present, the nickel having an average particle size of from 3 to 30 nm in the active catalyst. The invention further relates to the use of the catalyst in a process for preparing primary amines by hydrogenating nitrites.
Abstract:
In a process for the continuous hydrogenation of nitrites to primary amines in the liquid phase over a suspended, activated Raney catalyst based on an alloy of aluminum and at least one transition metal selected from the group consisting of iron, cobalt and nickel, and, if desired, one or more further transition metals selected from the group consisting of titanium, zirconium, chromium and manganese, the hydrogenation is carried out in the absence of ammonia and basic alkali metal compounds or alkaline earth metal compounds.
Abstract:
Alkenes are prepared by partial hydrogenation of alkynes in the liquid phase at from 20 to 250° C. and hydrogen partial pressures of from 0.3 to 200 bar over fixed-bed supported palladium catalysts which are obtainable by heating the support material in the air, cooling, applying a palladium compound and, if required, additionally other metal ions for doping purposes, molding and processing to give monolithic catalyst elements, by a process in which A) alkynes of 10 to 30 carbon atoms are used as starting compounds, B) the palladium compound and, if required, the other metal ions are applied to the support material by impregnation of the heated and cooled support material with a solution containing palladium salts and, if required, other metal ions and subsequent drying, and C) from 10 to 2000 ppm of carbon monoxide (CO) are added to the hydrogenation gas or a corresponding amount of CO is allowed to form in the liquid phase by slight decomposition of a compound which is added to the reaction mixture and eliminates CO under the reaction conditions. The process is particularly advantageous if the partial hydrogenation is carried out in a tube reactor by the trickle-bed or liquid phase procedure with product recycling at cross-sectional loadings of from 20 to 500 m3/m2*h. The process is particularly suitable for the preparation of 3,7,11,15-tetramethyl-1-hexadecen-3-ol (isophytol), 3,7,11-trimethyl-l-dodecen-3-ol (tetrahydronerolidol), 3,7,11-trimethyl-1,4-dodecadien-3-ol, 3,7,11-trimethyl-1,6-dodecadien-3-ol (dihydronerolidol), 3,7-dimethyloct-1,6-dien-3-ol or 3,7-dimethyloct-1-en-3-ol from the corresponding alkynes.
Abstract:
A cyclic lactam and a cyclic amine are coproduced by coreacting an aliphatic alpha, omega-diamine and an aliphatic alpha, omega-aminonitrile with water in the gas phase in the presence of a heterogeneous catalyst.
Abstract:
A catalyst for the selective hydrogenation of alkynes and dienes in C2-C5+-olefin mixtures is described.These catalysts contain (a) a metal of the tenth group of the Periodic Table, (b) a metal of the eleventh group of the Periodic Table and (c) if required, a compound of a metal of the first or second group of the Periodic Table, these metals being applied to a support which is selected from the group consisting of silica, titanium dioxide, zirconium oxides, spinels, zinc aluminates, zinc titanates or mixtures of these substances, and the metal of the eleventh group being distributed homogeneously over the cross section of the catalyst particle and the metal of the tenth group being present in the edge layer close to the surface of the catalyst particle. Such a catalyst is prepared by applying the metal of the eleventh group, preferably during the preparation of the support itself, by impregnation with a solution of a suitable metal salt.