Abstract:
An instrument system that includes an elongate body and an optical fiber is provided. The elongate body has a longitudinal axis and capable of being twisted about the longitudinal axis. The optical fiber is operatively coupled with the elongate body and having a strain sensor provided thereon. The strain sensor is configured to indicate twist of the elongate body.
Abstract:
A method and system for maintaining calibration of a distributed localization system are presented. After a baseline calibration of sensors distributed on a working instrument and reference instrument, if movement of the reference instrument is detected, shape sensing data from a Bragg shape sensing fiber also coupled to the reference instrument may be utilized to recalibrate the localization system. The reference instrument preferably is located intraoperatively in a relatively constrained anatomical environment, such as in the coronary sinus of the heart, to prevent significant movement.
Abstract:
A method and system for obtaining ultrasound data is provided. Two or more transducer elements are shorted or connected to the same transmit or receive channel for a single transmit or receive event. The affect of any grating lobes generated from shorting the transducer elements are minimized by receiving acoustic energy and then obtaining ultrasound data at a harmonic of a fundamental transmit frequency. No contrast agent is added during imaging. A multiplexer with a limited number of switches is used to short pairs of transducer elements together. Alternatively, a multiplexer with a limited number of switches is used to transmit or receive from spaced apertures, such as by connecting a channel to every second transducer element.
Abstract:
A method and apparatus for ultrasound imaging of Doppler energy-related parameters is described. An ultrasound imaging system includes a transducer for transmitting an ultrasound signal into a body and receiving a reflected ultrasound signal. The system determines the energy of the reflected signal from tissue within the body. Signal processing circuitry determines a Doppler intensity spectrum of the signal reflected from the tissue. The Doppler spectrum represents energy of the tissue-reflected signal as a function of Doppler frequency and time. Integration circuitry integrates the Doppler spectrum over Doppler frequency to determine the energy of the tissue-reflected signal as a function of time for display in strip mode. The system also determines an energy-velocity product. The integration circuitry may comprise circuitry for raising the Doppler intensity spectrum to a power m to generate a first spectral function and for raising a velocity-related function to a power n to generate a first velocity function. The integration circuitry integrates the product of the first spectral function and the first velocity function to determine the energy-velocity product function as a function of time.
Abstract:
An instrument system that includes an elongate body in a geometric configuration, an optical fiber, and a controller is provided. The optical fiber is operatively coupled to the elongate body and has a strain sensor provided on the optical fiber, wherein at least a portion of the optical fiber is in the geometric configuration. The controller is operatively coupled to the optical fiber and adapted to receive, from a source other than the optical fiber, information indicative of the geometric configuration, receive a signal from the strain sensor, and associate the signal with the geometric configuration.
Abstract:
An instrument system that includes an elongate body, an optical fiber, a localization sensor and a controller is provided. The optical fiber is operatively coupled to the elongate body and has a strain sensor provided on the optical fiber. The localization sensor is operatively coupled to the elongate body. The controller is operatively coupled to the optical fiber and to the localization sensor and is adapted to receive a first signal from the strain sensor, receive a second signal from the localization sensor, and determine a position or orientation of the elongate body based on the first signal and the second signal.
Abstract:
An instrument system that includes an elongate instrument body and an optical fiber sensor is provided. The optical fiber sensor includes an elongate optical fiber that is coupled to the elongate instrument body, wherein a portion of the optical fiber is coupled to the elongate instrument body in a manner to provide slack in the fiber to allow for axial extension of the elongate instrument body relative to the optical fiber.
Abstract:
An instrument system that includes an elongate body, an optical fiber, and a controller is provided. The optical fiber is operatively coupled to the elongate body and has a plurality of strain sensors provided on the optical fiber. Each of the plurality of strain sensors has a reflectivity, wherein one of the plurality of strain sensors has a different reflectivity than another one of the plurality of strain sensors. The controller is operatively coupled to the optical fiber and adapted to: receive one or more signals from the plurality of strain sensors; and determine a position of the elongate body based on the one or more signals.
Abstract:
An instrument system that includes an elongate body and an optical fiber is provided. The elongate body has a longitudinal axis and capable of being twisted about the longitudinal axis. The optical fiber is operatively coupled with the elongate body and having a strain sensor provided thereon. The strain sensor is configured to indicate twist of the elongate body.
Abstract:
An instrument system that includes an elongate body, an optical fiber, and a detector is provided. The elongate body is capable of being twisted. The optical fiber includes a first portion coupled to the elongate body and a second portion having a curved shape adapted to reduce transfer of twisting or bending from the elongate body to the second portion, the second portion having a strain sensor provided thereon. The detector is coupled to the optical fiber and adapted to receive a signal from the strain sensor.