Abstract:
A system and method for relaying transmissions in wireless communications is provided. A method for combined relay node operation includes determining an operating mode of the combined relay node, where the combined relay node includes a repeater and a relay. The method also includes if the operating mode is repeater on mode, amplifying and forwarding received signals, and storing subframes, where subframes are demodulated and decoded versions of the received signals. The method further includes if the operating mode is repeater off mode, amplifying and forwarding a control zone of signals received while the operating mode is repeater off mode, and transmitting subframes stored while the operating mode is repeater on mode.
Abstract:
A method and apparatus is provided for transmitting an orthogonal frequency domain multiple access (OFDMA) signal including a synchronization channel signal transmitted within a localized portion of a bandwidth of the OFDMA signal (818), the synchronization channel signal having predetermined time domain symmetry within the localized portion of the bandwidth (816) and including information for providing at least partial cell identification information (812). The synchronization channel signal enables an initial acquisition and cell search method with low computational load which provides OFDMA symbol timing detection and frequency error detection (1112) and frame boundary detection and cell specific information detection (1114) in an OFDMA system supporting multiple system bandwidths, both synchronized and un-synchronized systems, a large cell index and an OFDMA symbol structure with both short and long cyclic prefix length.
Abstract:
It is determined whether a first mobile station (102) should receive multicast communications. A control message is sent to at least one of the first mobile station (102) and a second mobile station (104). The control message initiates a mobile relay of multicast communications received at the second mobile station (104) to the first mobile station (102) via a proximal communication technology.
Abstract:
A method and apparatus for interleaving within a communication system is provided herein. More particularly parameters for a convolutional turbo code interleaver are provided, and interleaving takes place utilizing the new parameters. The new parameters generate interleavers that have the correct turbo code behaviors of improving performance with increasing block size and an error floor well below a block error rate of 10−4. Furthermore, the parameters have no implementation impact. Interleaving in accordance with the preferred embodiment of the present invention can achieve a block error rate of 10−4 at a signal-to-noise ratio that is at least 0.5 dB, and in some cases up to 1.3 dB, smaller than that which can be achieved with the code using the existing parameters.
Abstract:
A wireless communication terminal that communicates on a plurality of sub-carriers divided into a plurality of frequency bands, wherein each frequency band includes at least one sub-carrier. The terminal measures (310) a channel quality indicator (CQI) for a plurality of frequency bands, identifies (320) a subset of frequency bands for which the channel quality indicator has been measured based on a subset criterion, and transmits (330) a report identifying a subset of frequency bands for which a channel quality indicator has been measured or frequency bands not in the subset. In some embodiments, the report also includes a subset CQI value associated with at least the subset of frequency bands.
Abstract:
This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract. A method of improving block turbo decoder performance that comprises receiving soft input information corresponding to a first set of constituent codes of a block product code (900), scaling soft extrinsic information from a second set of constituent codes of the block product code (800), processing the scaled soft extrinsic information and the soft input information to produce soft output information suitable for a soft-input soft-output decoder (900), and performing one or more of: modifying encoded bit positions of the block product code, modifying decoded bit positions of a the block product code, permuting decoding parameters of the block product code to effect a preferred decoding order (500), detecting cases where a number of test patterns is insufficient to decode the soft output information and thereafter providing a different number of test patterns suitable for decoding the soft output information (1400), and adapting the number of test patterns in the soft-input soft-output decoder (1600).
Abstract:
A method for interlacing columns of different weights is proposed for a parity-check matrix H that results in good performing LDPC codes shortened or unshortened. Matrix H comprises a section H1 and a section H2, and wherein H1 has a plurality of different column weights and comprises a plurality of sub-matrices where columns of at least one weight are substantially interlaced between the sub-matrices.
Abstract:
A deterministic structure for controlled distribution of weight-2 columns is proposed for a parity-check matrix H that reduces the occurrence of undetected frame errors and significantly enhances the code performance in comparison to a randomly-constructed parity-check matrix. H comprises a non-deterministic section H1 and a deterministic section H2, and wherein H2 comprises a first part comprising a column h having an odd weight greater than 2, and a second part comprising matrix elements for row i, column j equal to 1 for i=j, 1 for i=j+1, 0 elsewhere.
Abstract translation:对于奇偶校验矩阵H,提出了权重2列的受控分布的确定性结构,其减少了未检测到的帧错误的发生,并且与随机构造的奇偶校验矩阵相比显着增强了代码性能。 H包括非确定性部分H 1和确定性部分H 2 H 2,并且其中H 2 H 2包括第一部分,其包含具有 大于2的奇数,以及包括用于行i的矩阵元素的第二部分,对于i = j,列j等于1,对于i = j + 1,0,其他地方为1。
Abstract:
In order to establish routing to/from a base station within a hybrid-cellular network, each network element is assigned a “class” based on a received signal strength of the base station. Each network element is allowed to choose a network element of lower class for relaying information to the base station.
Abstract:
An apparatus and method of storing streaming media in a memory associated with a wireless communication device in response to receiving a communication request. A wireless transmission of the media streaming session content can be received at the wireless communication device. The media streaming session content can be played at the wireless communication device while receiving the media streaming session content. A communication request can be received. Subsequent media streaming session content can be stored in a memory associated with the wireless communication device in response to receiving the communication request.