Abstract:
A manufacturing method to form a memory device includes forming a hard mask on a magnetic stack. A first magnetic stack etch is performed to form exposed magnetic layers. A liner is applied to the exposed magnetic layers to form protected magnetic layers. A second magnetic stack etch forms a magnetic random access memory (MRAM) cell, where the liner prevents shunting between the protected magnetic layers.
Abstract:
An apparatus includes circuits, a field line configured to generate a magnetic field based on an input, a sensing module configured to determine a parameter of each circuit, and a magnetic field direction determination module configured to determine an angular orientation of the apparatus relative to an external magnetic field based on the parameter. Each circuit includes multiple magnetic tunnel junctions. Each magnetic tunnel junction includes a storage layer having a storage magnetization direction and a sense layer having a sense magnetization direction configured based on the magnetic field. Each magnetic tunnel junction is configured such that the sense magnetization direction and a resistance of the magnetic tunnel junction vary based on the external magnetic field. The parameter varies based on the resistances of the multiple magnetic tunnel junctions. The magnetic field direction determination module is implemented in at least one of a memory or a processing device.
Abstract:
An apparatus includes circuits, a field line configured to generate a magnetic field based on an input, a sensing module configured to determine a parameter of each circuit, and a magnetic field direction determination module configured to determine an angular orientation of the apparatus relative to an external magnetic field based on the parameter. Each circuit includes multiple magnetic tunnel junctions. Each magnetic tunnel junction includes a storage layer having a storage magnetization direction and a sense layer having a sense magnetization direction configured based on the magnetic field. Each magnetic tunnel junction is configured such that the sense magnetization direction and a resistance of the magnetic tunnel junction vary based on the external magnetic field. The parameter varies based on the resistances of the multiple magnetic tunnel junctions. The magnetic field direction determination module is implemented in at least one of a memory or a processing device.
Abstract:
A circuit has a magnetic sensor that produces an uncompensated magnetic sensor output signal. A temperature sensor produces an ambient temperature signal. A compensation circuit is connected to the magnetic sensor and the temperature sensor. The compensation circuit is configured to add a computed temperature compensation signal to the uncompensated magnetic sensor output signal to produce a magnetic sensor temperature compensated output signal that reduces thermally induced variation of the uncompensated magnetic sensor output signal.
Abstract:
An apparatus includes groups of magnetic tunnel junctions, where the magnetic tunnel junctions in each group are arranged in rows, the magnetic tunnel junctions in each row are connected in series, and the rows are connected in parallel. The apparatus further includes a first conductive layer including conductive interconnects, a second conductive layer including straps, and a third conductive layer including field lines, each field line configured to generate a magnetic field for configuring an operating point of a corresponding subset of the magnetic tunnel junctions in each group based on a current flow through each field line. The magnetic tunnel junctions in each group are disposed between and connected to a corresponding one of the conductive interconnects and a corresponding one of the straps. The second conductive layer is disposed between the first conductive layer and the third conductive layer.
Abstract:
An apparatus includes circuits including a first circuit and a second circuit, each circuit including subarrays of magnetic tunnel junctions, where: (1) the magnetic tunnel junctions in each subarray are arranged in rows, the magnetic tunnel junctions in each row are connected in series, and the rows are connected in parallel; and (2) the subarrays are connected in series. The apparatus further comprises a field line configured to generate a first magnetic field for configuring an operating point of the first circuit based on a current flow through the field line, where the impedance of a subset of the plurality of rows in each subarray of magnetic tunnel junctions included in the first circuit is configured based on the first magnetic field.
Abstract:
A circuit has a magnetic device to produce a pre-distorted signal from a sinusoidal input signal. The magnetic device has physical attributes selected to produce characteristics of the pre-distorted signal. A power amplifier is coupled to the magnetic device. The power amplifier processes the pre-distorted signal to produce an output signal with reduced nonlinear behavior associated with the power amplifier.
Abstract:
An apparatus includes circuits, a field line configured to generate a magnetic field based on an input, a sensing module configured to determine a parameter of each circuit, and a magnetic field direction determination module configured to determine an angular orientation of the apparatus relative to an external magnetic field based on the parameter. Each circuit includes multiple magnetic tunnel junctions. Each magnetic tunnel junction includes a storage layer having a storage magnetization direction and a sense layer having a sense magnetization direction configured based on the magnetic field. Each magnetic tunnel junction is configured such that the sense magnetization direction and a resistance of the magnetic tunnel junction vary based on the external magnetic field. The parameter varies based on the resistances of the multiple magnetic tunnel junctions. The magnetic field direction determination module is implemented in at least one of a memory or a processing device.
Abstract:
An apparatus includes circuits, a field line configured to generate a magnetic field based on an input, a sensing module configured to determine a parameter of each circuit, and a magnetic field direction determination module configured to determine an angular orientation of the apparatus relative to an external magnetic field based on the parameter. Each circuit includes multiple magnetic tunnel junctions. Each magnetic tunnel junction includes a storage layer having a storage magnetization direction and a sense layer having a sense magnetization direction configured based on the magnetic field. Each magnetic tunnel junction is configured such that the sense magnetization direction and a resistance of the magnetic tunnel junction vary based on the external magnetic field. The parameter varies based on the resistances of the multiple magnetic tunnel junctions. The magnetic field direction determination module is implemented in at least one of a memory or a processing device.
Abstract:
An apparatus includes a circuit including multiple magnetic tunnel junctions, the circuit configured to convert a quadrature modulated magnetic field to a quadrature modulated electrical signal, each magnetic tunnel junction including a storage layer having a storage magnetization and a sense layer having a sense magnetization, each magnetic tunnel junction being configured such that the sense magnetization and impedance of each magnetic tunnel junction vary in response to the quadrature modulated magnetic field. The apparatus further includes a module configured to demodulate the quadrature modulated electrical signal to recover a signal encoded in the quadrature modulated magnetic field.