Abstract:
A composite container, comprising a form-retaining outer container and a flexible inner container is presented. The inner container comprises a dispensing opening and can be mounted in a neck of the outer container, and the inner container is further connected to the outer container by an adhesive or weld connection over a portion of its periphery. The adhesive or weld connection can take the form of a ring adhesion or weld extending transversely to a central longitudinal axis of the container, or can cover the entire surface area of a defined portion of the respective inner container and outer container walls, such as, for example, the upper one-half of the container. The adhesion or weld can be substantially permanent, or alternatively, the adhesive or weld connection can be adapted to detach in controlled manner under the influence of pressures occurring in the container. Additionally, a method for manufacturing such a composite container is also presented, including forming a form-retaining outer container pre-form comprising a neck, forming a flexible inner container pre-form comprising a dispensing opening, inserting the inner container pre-form into the outer container pre-form and fixing said inner container pre-form to the neck of the outer-container pre-form. If the two containers are to be connected by adhesive, then prior to inserting the inner container pre-form into the outer container pre-form, a glue or adhesive can be applied either to the outer surface of the inner container pre-form or to the inner surface of the outer container pre-form, defining a portion of the surface area of the inner and outer containers where they will be connected. Once the two pre-forms are assembled, the composite container can be blown to full size under significant pressures, and the inner container becomes connected to the outer container over the defined portion of their periphery (e.g., their upper halves) by the adhesive spreading under such pressure, or by welding, into an air-tight seal In exemplary embodiments of the present invention, the remaining portion of the inner container pre-form can be coated with an anti-stick coating prior to insertion into the outer container pre-form, so as to facilitate motion of the remaining portion of the flexible inner container relative to the outer container. In exemplary embodiments of the present invention, in operation, under pressure supplied by a displacing medium, the non-adhering portion of the inner container moves upwards within the outer container in a piston-like motion so as to dispense a product provided inside it, until it has completely folded on itself so that it its inner wall fully contacts the inner wall of the adhering portion of the inner container.
Abstract:
In exemplary embodiments of the present invention, Flair® based aerosol-type devices can be provided. Such devices utilize a combination of Flair® technology, pre-compression valves and aerosol like pressurization of the dispensed liquid. Such a dispensing device has a main body comprising a pressure chamber, the latter being provided with a pressure piston and a pressure spring. The device further has a piston and a piston chamber which draws liquid from a reservoir and fills the pressure chamber with that liquid as a user operates the trigger in various compression and release strokes. The piston chamber has both an inlet valve and an outlet valve. In a dispensing head a valve is provided to regulate the strength of the flow and preclude leakage. Once the liquid is sufficiently pressurized, it can be dispensed by a user opening an activation valve, such as by pressing on an activation button, and spray can be abruptly stopped by a user ceasing to push on such button. Or, for example, in alternate embodiments without an activation button, once the liquid is sufficiently pressurized, continuous spray occurs until the pressure chamber is emptied. By repeatedly pumping the trigger before the pressure chamber is fully emptied, continuous spray can be achieved. By designing the input volume to be amply greater than the volume of the pressure chamber, continuous spray with fewer pumping strokes can be implemented.
Abstract:
A composite container, comprising a form-retaining outer container and a flexible inner container is presented. The inner container comprises a dispensing opening and can be mounted in a neck of the outer container, and the inner container is further connected to the outer container by an adhesive or weld connection over a portion of its periphery. The adhesive or weld connection can take the form of a ring adhesion or weld extending transversely to a central longitudinal axis of the container, or can cover the entire surface area of a defined portion of the respective inner container and outer container walls, such as, for example, the upper one-half of the container. The adhesion or weld can be substantially permanent, or alternatively, the adhesive or weld connection can be adapted to detach in controlled manner under the influence of pressures occurring in the container. Additionally, a method for manufacturing such a composite container is also presented, including forming a form-retaining outer container pre-form comprising a neck, forming a flexible inner container pre-form comprising a dispensing opening, inserting the inner container pre-form into the outer container pre-form and fixing said inner container pre-form to the neck of the outer-container pre-form. If the two containers are to be connected by adhesive, then prior to inserting the inner container pre-form into the outer container pre-form, a glue or adhesive can be applied either to the outer surface of the inner container pre-form or to the inner surface of the outer container pre-form, defining a portion of the surface area of the inner and outer containers where they will be connected. Once the two pre-forms are assembled, the composite container can be blown to full size under significant pressures, and the inner container becomes connected to the outer container over the defined portion of their periphery (e.g., their upper halves) by the adhesive spreading under such pressure, or by welding, into an air-tight seal. In exemplary embodiments of the present invention, the remaining portion of the inner container pre-form can be coated with an anti-stick coating prior to insertion into the outer container pre-form, so as to facilitate motion of the remaining portion of the flexible inner container relative to the outer container. In exemplary embodiments of the present invention, in operation, under pressure supplied by a displacing medium, the non-adhering portion of the inner container moves upwards within the outer container in a piston-like motion so as to dispense a product provided inside it, until it has completely folded on itself so that it its inner wall fully contacts the inner wall of the adhering portion of the inner container.
Abstract:
Dispensing devices are provided. Such devices utilize a combination of Flair® technology, pre-compression valves and aerosol-like pressurization of the dispensed liquid. An example dispensing device has, for example, a main body comprising a pressure chamber, the latter being provided with a pressure piston and a pressure spring. The device further has a piston and a piston chamber which draws liquid from a container and fills the pressure chamber with that liquid as a user operates a trigger in various compression and release strokes. The piston chamber has both an inlet valve and an outlet valve. Liquid exiting the piston chamber under pressure enters a central vertical channel which is in fluid communication with both the pressure chamber and a dome valve, with pre-defined opening pressure, provided near the outlet channel at the top of the dispensing head.
Abstract:
The invention relates to a system for dosed dispensing of a fluid, comprising a container for the fluid and a dispensing device connected therewith, wherein the container comprises a form-retaining outer container and a flexible inner container connected therewith, wherein a space to be brought into fluid communication with the ambient atmosphere can be developed between the inner and outer containers, and wherein the dispensing device includes a housing and/or frame of which at least a part is integrally formed with the container. The invention further relates to a method of manufacturing a system for dosed dispensing of a fluid, comprising the steps of: manufacturing a container for the fluid, said container comprising a form-retaining outer container and a flexible inner container connected therewith; manufacturing a dispensing device comprising a housing and/or a frame; and assembling the container and the dispensing device; wherein at least a part of the dispensing device housing and/or frame is integrally formed with the container, and wherein assembling the container and the dispensing device comprises mounting a non-integrated part of the dispensing device in the part of the dispensing device housing and/or frame which is integrally formed with the container.
Abstract:
In exemplary embodiments of the present invention, Flair® based aerosol-type devices can be provided. Such devices utilize a combination of Flair® technology, pre-compression valves and aerosol like pressurization of the dispensed liquid. Such a dispensing device has a main body comprising a pressure chamber, the latter being provided with a pressure piston and a pressure spring. The device further has a piston and a piston chamber which draws liquid from a reservoir and fills the pressure chamber with that liquid as a user operates the trigger in various compression and release strokes. The piston chamber has both an inlet valve and an outlet valve. In a dispensing head a valve is provided to regulate the strength of the flow and preclude leakage. Once the liquid is sufficiently pressurized, it can be dispensed by a user opening an activation valve, such as by pressing on an activation button, and spray can be abruptly stopped by a user ceasing to push on such button. Or, for example, in alternate embodiments without an activation button, once the liquid is sufficiently pressurized, continuous spray occurs until the pressure chamber is emptied. By repeatedly pumping the trigger before the pressure chamber is fully emptied, continuous spray can be achieved. By designing the input volume to be amply greater than the volume of the pressure chamber, continuous spray with fewer pumping strokes can be implemented.
Abstract:
The invention relates to a system (1) for dosed dispensing of a fluid, comprising a contain (2) for the fluid and a dispensing device connected therewith, wherein the container comprises a form-retaining outer container (5) and a flexible inner container (4) connected therewith, wherein a space to be brought into fluid communication with the ambient atmosphere can be developed between the inner and outer containers (5, 4), and wherein the dispensing device includes a housing and/or frame of which at least a part is integrally formed with the container. The invention further relates to a method of manufacturing a system for dosed dispensing of a fluid.
Abstract:
A preform can be made from two different materials that do not bond together by a bi-injection process, using the same mold. First an outer preform can be fashioned first, then an inner preform molded through a center hole in the outer preform, and the preforms connected. Inner/outer preform materials can be different, e.g., PET/polyolefin or polyamide, or the same, e.g., PET/PET. To prevent mutual bonding during molding of the second, a non-stick coating can be sprayed on a surface portion of the first preform prior to molding, the second. Manufacturing order can be either outer/inner, or inner/outer, and the non-stick coating sprayed on the inside/outside of the perform first molded.
Abstract:
The invention relates to a liquid dispensing system comprising a liquid dispensing device (2) and one or more containers (3) for storing the liquid to be dispensed, wherein the liquid dispensing device is releasably connected to one of the containers. The liquid dispensing system includes means for preventing refilling of the at least one container. The refill prevention means may include a restriction element (7) which may be fixed in a neck of the container and may almost completely close off a fill opening defined by the neck. The invention further relates to a method of dispensing a liquid, comprising the steps of filling at least one container with the liquid to be dispensed, providing a liquid dispensing device, connecting the liquid dispensing device to the at least one container, and actuating the liquid dispensing device, wherein after filling the container is provided with means for preventing refilling thereof.
Abstract:
In exemplary embodiments of the present invention, “Flairosol” dispensing devices can be provided. Such devices utilize a combination of Flair® technology, pre-compression valves and aerosol-like pressurization of the dispensed liquid. Such a dispensing device has, for example, a main body comprising a pressure chamber, the latter being provided with a pressure piston and a pressure spring. The device further has a piston and a piston chamber which draws liquid from a container, for example, the inner container of a Flair® bottle, and fills the pressure chamber with that liquid as a user operates a trigger in various compression and release strokes. The piston chamber has both an inlet valve and an outlet valve, which serve to prevent backflow. Liquid exiting the piston chamber under pressure (supplied by a user pumping the trigger) enters a central vertical channel which is in fluid communication with both the pressure chamber (above the pressure piston) and a dome valve provided near the outlet channel at the top of the dispensing head. The dome valve has a preset pressure, such that once exceeded by the liquid, opens and allows for a spray. If the liquid pressure drops below such preset pressure, the dome valve closes off the outlet channel, which serves to regulate the strength of the flow and preclude leakage. Alternatively, in an activated embodiment, for example, once the liquid is sufficiently pressurized, it can be dispensed by a user allowing the dome valve to open by pressing on an activation button that removes a dome lock.