摘要:
A method and device are provided for forming an integrated Ge or Ge/Si photo detector in the CMOS process by non-selective epitaxial growth of the Ge or Ge/Si. Embodiments include forming an N-well in a Si substrate; forming a transistor or resistor in the Si substrate; forming an ILD over the Si substrate and the transistor or resistor; forming a Si-based dielectric layer on the ILD; forming a poly-Si or a-Si layer on the Si-based dielectric layer; forming a trench in the poly-Si or a-Si layer, the Si-based dielectric layer, the ILD, and the N-well; forming Ge or Ge/Si in the trench; and removing the Ge or Ge/Si, the poly-Si or a-Si layer, and the Si-based dielectric layer down to an upper surface of the ILD. Further aspects include forming an in-situ doped Si cap epilayer or an ex-situ doped poly-Si or a-Si cap layer on the Ge or Ge/Si.
摘要:
A method of forming a device is disclosed. A substrate having a device region is provided. The device region comprises a source region, a gate and a drain region defined thereon. A drift well is formed in the substrate adjacent to a second side of the gate. The drift well underlaps a portion of the gate with a first edge of the drift well beneath the gate. A secondary portion is formed in the drift well. The secondary portion underlaps a portion of the gate with a first edge of the secondary portion beneath the gate. The first edge of the secondary portion is offset from the first edge of the drift well. A gate dielectric of the gate comprises a first portion having a first thickness and a second portion having a second thickness. The second portion is over the secondary portion.
摘要:
A method for manufacturing an integrated circuit system that includes: providing a substrate including an active device; forming a drift region in the substrate, the drift region bounded in part by a top surface of the substrate and spaced apart from a source; and forming a drain above the drift region.
摘要:
An integrated circuit device having deeper STI trenches for device isolation and shallower STI trenches at the gate edge for low on-resistance and a method for forming the same are described. The integrated circuit device of the invention comprises a gate electrode on a gate dielectric layer overlying a substrate, source and drain regions within the substrate on either side of the gate, first dielectric trenches isolating the gate electrode and source and drain regions from other devices, and a second dielectric trench underlying an edge of the gate adjacent to the drain region wherein the second dielectric trench is shallower than the first dielectric trenches.
摘要:
A method for forming a low Rdson LDNMOS and a high sheet resistance poly resistor and the resulting device are provided. Embodiments include forming first, second, and third STI regions in a substrate; forming a P-well in the substrate around the first STI region with a first mask; forming an N-drift region in the substrate between the P-well and the third STI region with the first mask; forming a dielectric layer over the substrate; forming a poly-silicon layer over the dielectric layer; performing an N-drain implant between the second and third STI regions with a second mask; performing a resistance adjustment implant in, but not through, the poly-silicon layer with the second mask; and patterning the poly-silicon and dielectric layers subsequent to performing the resistance adjustment implant to form a gate stack and a poly resistor, the poly resistor being formed over the third STI region and laterally separated from the gate stack.
摘要:
A method and device are provided for forming an integrated Ge or Ge/Si photo detector in the CMOS process by non-selective epitaxial growth of the Ge or Ge/Si. Embodiments include forming an N-well in a Si substrate; forming a transistor or resistor in the Si substrate; forming an ILD over the Si substrate and the transistor or resistor; forming a Si-based dielectric layer on the ILD; forming a poly-Si or a-Si layer on the Si-based dielectric layer; forming a trench in the poly-Si or a-Si layer, the Si-based dielectric layer, the ILD, and the N-well; forming Ge or Ge/Si in the trench; and removing the Ge or Ge/Si, the poly-Si or a-Si layer, and the Si-based dielectric layer down to an upper surface of the ILD. Further aspects include forming an in-situ doped Si cap epilayer or an ex-situ doped poly-Si or a-Si cap layer on the Ge or Ge/Si.
摘要:
LDD regions are provided with high implant energy in devices with reduced thickness poly-silicon layers and source/drain junctions. Embodiments include forming an oxide layer on a substrate surface, forming a poly-silicon layer over the oxide layer, forming first and second trenches through the oxide and poly-silicon layers and below the substrate surface, defining a gate region therebetween, implanting a dopant in a LDD region through the first and second trenches, forming spacers on opposite side surfaces of the gate region and extending into the first and second trenches, and implanting a dopant in a source/drain region below each of the first and second trenches.
摘要:
A method of forming a device is disclosed. A substrate having a device region is provided. The device region comprises a source region, a gate region and a drain region defined thereon. A gate is formed in the gate region, a source is formed in the source region and drain is formed in the drain region. A trench is formed in an isolation region in the device region. The isolation region underlaps a portion of the gate. An etch stop (ES) stressor layer is formed over the substrate. The ES stressor layer lines the trench.
摘要:
A device is disclosed. The device includes s substrate prepared with an active device region. The active device region includes a gate. The device also includes a doped channel well disposed in the substrate adjacent to a first edge of the gate. The first edge of the gate overlaps the channel well with a channel edge of the channel well beneath the gate. The first edge of the gate and channel edge defines an effective channel length of the device. The effective channel length is self-aligned to the gate. A doped drift well adjacent to a second edge of the gate is also included.
摘要:
A method of forming a device is presented. The method includes providing a substrate having a device region which includes a source region, a gate and a drain region defined thereon. The method also includes implanting the gate. The gate comprises one or more doped portions with different dopant concentrations. A source and a drain are formed in the source region and drain region. The drain is separated from the gate on a second side of the gate and the source is adjacent to a first side of the gate.