Abstract:
A spectrometer assembly (10), comprising an Echelle grating (18; 46) for dispersing radiation entering the spectrometer assembly (10) in a main dispersion direction, and a dispersion assembly (16; 40) for dispersing a parallel radiation bundle generated from the radiation entering the spectrometer assembly in a lateral dispersion direction, is characterized in that the dispersion assembly (16; 40) is reflective, and the dispersion assembly (16; 40) is arranged relative to the Echelle grating (18; 46) in such a way that the parallel radiation bundle is reflected in the direction of the Echelle grating. The Echelle grating (18; 46) may be arranged in such a way that the dispersed radiation is reflected back to the dispersion assembly (16; 40).
Abstract:
A spectrometer assembly (10), comprising an Echelle grating (18; 46) for dispersing radiation entering the spectrometer assembly (10) in a main dispersion direction, and a dispersion assembly (16; 40) for dispersing a parallel radiation bundle generated from the radiation entering the spectrometer assembly in a lateral dispersion direction, is characterized in that the dispersion assembly (16; 40) is reflective, and the dispersion assembly (16; 40) is arranged relative to the Echelle grating (18; 46) in such a way that the parallel radiation bundle is reflected in the direction of the Echelle grating. The Echelle grating (18; 46) may be arranged in such a way that the dispersed radiation is reflected back to the dispersion assembly (16; 40).
Abstract:
The invention relates to a spectrometer arrangement (10) comprising a spectrometer (14) for producing a spectrum of a first wavelength range of radiation from a radiation source on a detector (42). Said arrangement also comprises: an Echelle grating (36) for the spectral decomposition of the radiation penetrating the spectrometer arrangement (10) in a main dispersion direction (46); a dispersing element (34) for separating the degrees by means of spectral decomposition of the radiation in a transversal dispersion direction (48) which forms an angle with the main dispersion direction of the Echelle grating (36), in such a way that a two-dimensional spectrum (50) can be produced with a plurality of separated degrees (52); an imaging optical element (24, 38) for imaging the radiation penetrating through an inlet gap (20) into the spectrometer arrangement (10), in an image plane (40); and a surface detector (42) comprising a two dimensional arrangement of a plurality of detector elements in the image plane (40). The inventive arrangement is characterised in that another spectrometer (12) comprising at least one other dispersing element (64) and another imaging optical element (60,66) is provided in order to produce a spectrum (68) of a second wavelength range of radiation, which is different from the first wavelength range, from a radiation source on the same detector (42). The spectra can be spatially or temporally separated on the detector.
Abstract:
A spectrometer assembly (10) comprises a light source (11) with a continuous spectrum, a pre-monochromator (2) for generating a spectrum with a relatively small linear dispersion from which a spectral portion is selectable, the spectral bandwidth of such spectral portion being smaller than or equal to the bandwidth of the free spectral range of such order in the echelle spectrum wherein the centre wavelength of the selected spectral interval is measurable with maximum blaze efficiency, an echelle spectrometer (4) with means for wavelength calibration, an entrance slit (21) at the pre-monochromator (2), an intermediate slit assembly (50) with an intermediate slit (3) and a spatially resolving light detector (5) in the exit plane of the spectrometer for the detection of wavelength spectra. The assembly is characterised in that the width of the intermediate slit (3) is larger than the monochromatic image of the entrance slit generated by the pre-monochromator at the location of the intermediate slit, and means for calibrating the pre-monochromator are provided, which are adapted to calibrate the light of the light source with a continuous spectrum on the detector to a reference position.
Abstract:
A coding head for applying magnetic codes onto magnetizable layers of scales, graduations, angle encoders, transport belts and the like has a magnetic pole (10) about which a coil (12) is wound, the saturation induction of the magnetic pole being selected in dependence upon the coercive field strength of the magnetizable layer (18). In this case, the saturation induction (in Tesla) has a specified relationship to the coercive field strength (in kOe).
Abstract:
The invention relates to a spectrometer useful in analytical spectroscopy. The spectrometer has an imaging diffraction grating, a planar receiver system, and an element for flattening the image field, wherein the improvement comprises that a body of low refractive power and perceptible secondary spectrum is used as the element for flattening the image field, said body having at least two optically active surfaces, and is disposed between the entry slit and the diffraction grating.
Abstract:
The invention refers to a device for investigating highly resolved partial spectra of an echelle spectrum, being applicable to the simultaneous determination of the intensities of different spectral elements of a radiation spectrum produced by an echelle spectrometer. The device consists of a position-resolving photoelectric detector including several photosensors arranged on an IC chip, where said photosensors are arranged on the chip surface discretely at the positions of preselected spectral lines, each of the photosensors consisting of a CCD sensor row and a logic circuit which, depending on activation levels, enables supply potentials and clock signals to be connected and output signals to be transferred to a common output signal line; the areas of the individual sensor elements of the CCD sensor rows being matched to the spectral elements of the echelle spectrum and extending successively in the direction of dispersion of the echelle grating; the total number of sensor elements of all CCD sensor rows on the chip being smaller than the number of spectral elements in the echelle spectrum; and a digital logic circuit enabling, by means of the activation levels managed by it, the serial readout of the signals from a selsotable subset of all CCD sensor rows in a selectable order of succession, via the common output signal line, depending on external control signals.
Abstract:
In a magnetic field sensor comprising at least one magnetic-field-dependent resistor disposed in the vicinity of an outer side of a housing that is open on at least one side and further comprising a permanent magnet that is adjacent to said magnetic-field-dependent resistor, the magnetic-field-dependent resistor(s) (6), arranged on a support (4), are in a contacting relationship with the inside of a detector side wall (2) of the housing (1), and the thickness (x) of said detector side wall (2) is, at least in the area of the active surface of the magnetic-field-dependent resistors (6), smaller than that of the other housing walls (17, 18, 19) and/or the housing base (20). A rugged, high-resolution magnetic field sensor is thus obtained.
Abstract:
A light and weather resistance testing apparatus (9) is provided with a sensor (1) located in the plane of the testing samples (14). The sensor (1) uses a transmitter (4) for wireless transmission of signals representing radiation received to an antenna (3) disposed on the wall (8) of the apparatus housing. The sensor (1) has multiple receptor cells (6) for various spectral ranges. The sensor (1) is powered by solar cells (7) located on the sensor housing. A plotter and display unit (13) can be connected to the apparatus for read-out of irradiance and irradiation. The wireless transmission of data from sensors to the display unit permits continuous measurement during rotation of samples and sensor.
Abstract:
A method to determine and correct broadband background in complex spectra in a simple and automatized manner includes carrying out a background correction with respect to broadband background before a calibration step. The background correction may involve recording a spectral graph and smoothing the recorded spectral graph, determining all values in the initially recorded graph having a value higher than the value of the smoothed graph and reducing such values to the value of the smoothed graph, and repeating these two steps. The background graph obtained is then subtracted from the initial graph. The smoothing of the graph is carried out by moving average, where each intensity value I at the position x in the spectrum is replaced by an average value. The characteristics of the found peaks can be stored in a file so that the calibration can be used at any time.