Abstract:
A method of generating a photolithography patterning device for transferring a pattern formed in the patterning device onto a substrate utilizing a lithographic projection apparatus includes defining features within the pattern formed in the device, wherein the features have dimensions and orientations chosen to create a desired image on the substrate during pattern transfer; and adjusting the dimensions of the features to compensate the desired image for displacement and dimension errors introduced by the effective shadow angle of the radiation on the features during pattern transfer or correlated to the position of the features within the exposure slit during pattern transfer. A measurement device for determining the position of a target image on or proximate a substrate in a lithographic projection apparatus, wherein the target image is formed by features on a patterning device, includes a detector configured to measure the position of the target image on or proximate the substrate, wherein the detector compensates the measured position of the target image for displacement and dimension errors introduced by the effective shadow angle of the radiation on the features of the patterning device during pattern transfer or correlated to the position of the features within the exposure slit during pattern transfer. A lithographic apparatus includes a measurement device.
Abstract:
A lithographic projection apparatus is disclosed in which a space between the projection system and the substrate is filled with a liquid. An edge seal member at least partly surrounds the substrate or other object on a substrate table to prevent liquid loss when edge portions of the substrate or other object are, for example, imaged or illuminated. A lithographic projection apparatus includes a support structure configured to hold a patterning device, the patterning device configured to pattern a beam of radiation according to a desired pattern; a substrate table configured to hold a substrate; a projection system configured to project the patterned beam onto a target portion of the substrate; a liquid supply system configured to provide liquid to a space between the projection system and the substrate; and a shutter configured to isolate the space from the substrate or a space to be occupied by a substrate.
Abstract:
A lithographic projection apparatus is disclosed in which a space between the projection system and the substrate is filled with a liquid. An edge seal member at least partly surrounds the substrate or other object on a substrate table to prevent liquid loss when edge portions of the substrate or other object are, for example, imaged or illuminated.
Abstract:
A lithographic apparatus configured to project a patterned radiation beam onto a substrate. The apparatus includes a support configured to hold a patterned object, and a measurement system configured to detect orientations and/or densities of user area structures that are present on a user area of the patterned object.
Abstract:
A lithographic projection apparatus is disclosed for use with an immersion liquid positioned between the projection system and a substrate. Several methods and mechanism are disclosed to protect components of the projection system, substrate table and a liquid confinement system. These include providing a protective coating on a final element of the projection system as well as providing one or more sacrificial bodies upstream of the components. A two component final optical element of CaF2 is also disclosed.
Abstract:
A map of the surface of a substrate is generated at a measurement station. The substrate is then moved to where a space between a projection lens and the substrate is filled with a liquid. The substrate is then aligned using, for example, a transmission image sensor and, using the previous mapping, the substrate can be accurately exposed. Thus the mapping does not take place in a liquid environment.
Abstract:
A lithographic projection apparatus is disclosed. The apparatus includes an illuminator for conditioning a beam of radiation, and an article holder. The article holder includes a plurality of protrusions arranged to provide a substantially flat plane of support for supporting an article to be placed in a beam path of the beam of radiation. The protrusions are generally spaced apart equidistantly at a first distance. The article holder also includes a pair of electrodes for clamping the article to the holder. The electrodes are disposed in substantially the same plane above or below the protrusions, and are spaced apart from one another by a gap. Neighboring protrusions within the plurality of protrusions that are located on opposite sides of the gap are spaced apart by a second distance that is greater than the first distance.
Abstract:
A map of the surface of a substrate is generated at a measurement station. The substrate is then moved to where a space between a projection lens and the substrate is filled with a liquid. The substrate is then aligned using, for example, a transmission image sensor and, using the previous mapping, the substrate can be accurately exposed. Thus the mapping does not take place in a liquid environment.